

GUI Software User Guide

Ver. 3.1

Table of Contents

Table of Contents	1
Revision History	6
Copyright Notice	9
Disclaimer)
Contact Us1	1
Chapter 1 Installation & Interface12	2
1.1 Software	2
1.2 Installation12	2
1.2.1 System Requirements12	2
1.2.2 Steps	3
1.2.3 Installed Files	
1.1 User Interface (UI)	7
1.3.1 Interface Elements	
1.3.2 How to Input Parameter Values	
1.4 Boot Loader—Update Firmware	
1.5 Save and Load Driver Data2	
1.6 Setting Process	8
Chapter 2 Communication	9
Chapter 3 Wizard	1
3.1 Motor Type	5
3.2 Motor feedback	6
3.3 Motor Protection	
3.4 Input & Output	
3.5 Tune – Current	
3.6 Tune – Phase	
3.7 Tune – Velocity	
3.8 Save to Flash	
Chapter 4 Settings 45	
4.1 Driver	
4.1.1. Information	5
4.1.2 Parameter	5
4.1.3 Feature Revision	5
4.1.4 Others	5
4.2 Motor Type	8
4.2.1 Linear Motor / Normal Mode54	4
4.2.2 Linear Motor / Optimized Mode5	ō

4.2.3 Rotary Motor /Normal Mode	
4.2.4 Rotary Motor / Only Negative (CCW)	58
4.2.5 Rotary Motor / Only Positive (CW)	58
4.2.6 Rotary Motor / Optimized Mode	59
4.3 Motor Protection	60
4.3.1 Current	60
4.3.2 Velocity	62
4.3.3 Position	65
4.3.4 Modulo	69
4.3.5 Motor Stuck	69
4.3.6 Power Stage	
4.4 FSA & Disable Option	
4.4.1 Finite State Automata	
4.4.2 Disable Option	
4.4.2.1 Situation Explanation	80
4.4.2.2 Reaction Explanation	83
4.4.2.3 Dynamic Brake	84
4.4.2.4 Holding Brake	85
4.5 Feedback	86
4.5.1 Incremental Encoder A/B	
4.5.2 Sine/Cosine Encoder	93
4.5.2 Sine/Cosine Encoder 4.5.2.1 Parameter Tab	
	96
4.5.2.1 Parameter Tab4.5.2.2 Calibration Tab4.5.2.3 Calibration Steps	96 98 99
4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab	96 98 99
4.5.2.1 Parameter Tab4.5.2.2 Calibration Tab4.5.2.3 Calibration Steps	96
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 4.7 Input & Output 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 4.7 Input & Output 4.7.1 Input 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 4.7 Input & Output 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 4.7 Input & Output 4.7.1 Input 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 4.7 Input & Output 4.7.1 Input Functions 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 4.7 Input & Output 4.7.1 Input Functions 4.7.2 Output 4.7.2.1 Output Functions 4.8 Boot Sequence 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 4.6.2 Analog to Position & Velocity & Current mode 4.7.1 Input 4.7.1 Input 4.7.2 Output 4.7.2 Output 4.7.2.1 Output Functions 4.8 Boot Sequence 4.9 Error Mapping 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 4.7 Input & Output 4.7.1 Input Functions 4.7.2 Output 4.7.2.1 Output Functions 4.8 Boot Sequence 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 4.6.2 Analog to Position & Velocity & Current mode 4.7.1 Input 4.7.1 Input 4.7.2 Output 4.7.2 Output 4.7.2.1 Output Functions 4.8 Boot Sequence 4.9 Error Mapping 	
 4.5.2.1 Parameter Tab 4.5.2.2 Calibration Tab 4.5.2.3 Calibration Steps 4.5.3 Tamagawa Encoder 4.5.4 Event Limit 4.6 Auxiliary Command 4.6.1 Encoder to Position mode 4.6.2 Analog to Position & Velocity & Current mode 4.6.2 Analog to Position & Velocity & Current mode 4.7.1 Input & Output 4.7.1 Input Functions 4.7.2 Output 4.7.2.1 Output Functions 4.8 Boot Sequence 4.9 Error Mapping 4.9.1 Error Mapping Interface. 	

4.9.1.3 Measuring Method Zone	137
4.9.1.4 Record Table	138
4.9.1.5 Graph Zone	138
4.9.2 Configuration Steps	. 139
4.10 Position Comparator	
Chapter 5 Tune	. 146
5.1 Current	. 147
5.1.1 Current Loop Gain	. 147
5.1.2 Auto Tune	. 150
5.1.3 Frequency Response (Bode Plot)	. 151
5.1.4 Time Response	. 154
5.2 Phase	
5.2.1 Auto Phase	. 157
5.2.2 Phase Find	. 158
5.2.2.1 Force Zero	159
5.2.2.2 Hall	160
5.2.2.2.1 Steps—Obtaining the motor electric angle theta value	161
5.2.2.3 Abs. Enc. ST. Pos.	164
5.2.3 Other Settings of Phase	. 165
5.2.4 Manually Set Phase	. 166
5.3 Velocity	. 167
5.3.1 Velocity Loop Gain	. 167
5.3.2 Auto Calculate	. 168
5.3.3 Filter	. 169
5.3.4 Auto Tune	. 170
5.3.5 Frequency Response (Bode Plot)	. 171
5.3.6 Time Response	. 173
5.4 Position	
5.4.1 Position Loop Gain	
5.4.2 Auto Calculate	
5.4.3 Other	. 177
5.4.4 Time Response	
5.5 Gain Switch	
5.5.1 Single-set mode	
5.5.2 Digital In	
5.5.3 Demand & Feedback & Error	
5.5.4 Target reach flag	
Chapter 6 Trial Run	
6.1 Monitor	. 188

6.2 Motion	191
6.2.1 Direct Position & Velocity & Current	192
6.2.2 Profile Position	
6.2.3 Profile Velocity	
6.2.4 Profile Torque	
Chapter 7 Homing	
7.1 Setting	
7.2 Homing Method 7.2.1 CiA 402 Standard Homing Method	
By Limit Switch and Index Pulse	
By Home Switch and Index Pulse	
By Home Switch, Index Pulse, and Limit Switch	
Method 15 to 16: Reserved.	
By Limit Switch	215
By rising/falling edge of Home Switch	217
By Home Switch and Limit Switch	221
Method 31 to 32: Reserved.	228
By First Pulse	229
By Current Position	230
7.2.2 cpc-defined Homing Method	
By Hard Stop	231
By Hard Stop and Index	233
By the middle of Hard Stop	235
By the middle of Limit Switch	237
By the middle of Home Switch	239
7.3 Homing Error Code	243
Chapter 8 Scope	
8.1 Intro and Interface Tour	
8.2 Window Control Panel	
8.3 [Scope Setting Trial Run Gain Script] Panel	
8.3.1 Scope Setting Tab 8.3.1.1 Preset	
8.3.1.2 Recoding Setting	
8.3.1.3 Normal/Rolling and Trigger Setting	
8.3.2 Trial Run Tab	
8.3.3 Gain Tab	
8.3.4 Script Tab	
•	

8.4 Display Panel	255
8.4.1 Data Presentation Way	
8.4.2 Save to Files	
8.4.3 Scope Tools 8.5 Further Setting Panel	
8.5.1 Channel Tab & Line Tab	
8.5.2 Grid Tab	
8.5.3 Mark Tab	
8.5.4 Digital Bus Tab	
8.5.4.1 Configuration Steps	
Chapter 9 Script	
9.1 Intro and Interface Tour	270
9.2 Interface Elements	272
9.3 Import Scripts from File	
9.4 Modify Script Parameter	
9.5 Add a Function	
9.5.1 Into a New File	
9.5.2 Into a Currently-Used File	
9.6 Run the Script	
9.7 Function Description	
9.7.1 Set Parameter	
9.7.2 Motion	
9.7.3 Wait	
9.7.4 Limit	
9.7.5 Flow Control	
9.7.6 Motor	
9.7.7 Register	
Chapter 10 Error Log	

Revision History

Version	Date	Description	Remarks
1.0	DEC., 2015	Initial release	
1.1	APR., 2016	1 st revision	
2.0	APR., 2018	2 nd revision	Major updates
3.0	OCT., 2018	3 rd revision	Amended and added several new functions, including: 1. Interface element: Added I/O viewer function (1.3.1). 2. Wizard: I Added flow-setting page in Wizard. How to add/delete new motor (Ch. 3). 3. Setting-Motor Protection Revised the diagram of motor continuous current (4.3.1). 4. Settings-Disable Option: Revised Disable Option intro (4.4.2). Added descriptions of dynamic brake (4.4.2.3). Added "Disable Reaction End Vel" function (4.4.2.3-(b)). Deleted Motor Stuck function. 5. Settings-Feedback: Amended explanation of Encoder/Index Position (4.5-(f)). Added "Invert encoder polarity" function (4.5.1-(b)). Added new functions (Parameter & Calibration Tab) under Sine/Cosine encoder (4.5.2; 4.5.2.1; 4.5.2.2). Added Calibration Steps (4.5.2.3). Implemented Tamagawa encoder (4.5.4). 6. Settings-Boot Sequence: Added RIGHT route (4.8) and its explanations (4.8).

Version	Date	Description	Remarks
			 Added "Don't abort on fault" function
			(4.8 chart).
			7. Settings-Position Comparator:
			ı New layout (4.10).
			8. Tune (general)
			 Added functions of "Zoom Mode / Zoom
			Reset / Save as txt / Show Prevalue" for
			Bode plot as well as Frequency response
			of Tune-Current, -Velocity, and -Position.
			 Revised "sample count" description in
			Bode plot part.
			 Added new graph functions as follows:
			n Current: VdDmd graph (5.1.4-(h)).
			n Velocity: ldFdb (5.3.6-(l)).
			n Pos.: PosError (5.4.4-(h)).
			9. Tune-Phase
			I Phase Find (5.2.2):
			n Rearranged introduction.
			n Added Hall Theta Table function
			(5.2.2.2) and explained how to
			obtain its value by Scope (5.2.2.2.1).
			n Added "Phase Find—Absolute
			encoder" function (5.2.2.3).
			 Added "invert commutation polarity"
			function (5.2.3-(b)).
			I Added a new chapter: Manually Set
			Phase (5.2.4).
			10. Tune-Gain Switch
			New layouts (5.5).
			11. Trial Run
			New layout (6.2.2).
			Added "Estimated Runtime" and "Dwell
			Time" functions (6.2.2-(d & l)).
			Allow users to set motor's current
			position as point A/B for Absolute-Move
			commands (6.2.2-(i & h)).
			12. Homing:
			Added "homing error trigger fault event"
			function (7.1-(i)).

Version	Date	Description	Remarks
			 Added warning about the functions
			"TransitP.P. mode" and "Move to new
			zero" (7.1-(g & h)).
			13. And other miscellaneous revisions.
3.1	July., 2019		Revise Output function (4.7.2).

Copyright Notice

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means without prior written permission of Chieftek Precision Co., Ltd.

Disclaimer

- Information furnished by cpc is believed to be accurate and reliable. However, no responsibility is assumed by cpc for its use, nor for any infringements of patents or other rights of third parties which may result from its use. cpc doesn't grant any license under its patent rights, nor the rights of others.
- 2. In addition, cpc assumes no responsibility for any errors that may appear in this document and for any claims or damages arising from information contained in this document.
- 3. The product specified in this document has been developed, produced, tested and documented in accordance with the relevant standards. cpc is not responsible for damages, accidents, or injuries caused by any deviation from the configuration and installation described in this guide;
- 4. Furthermore, cpc is not responsible for the performance of new measurements or ensuring that regulatory requirements are met.
- 5. The product specified in this document is not assumed to be used in critical application including, but not limited to, medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, as well as disaster prevention and crime prevention equipment.
- 6. We reserve the right to modify our products, including its hardware and software design, in order to improve its design and/or performance. The information in this document is subject to change without notice and does not represent a commitment by cpc.
- 7. Specifications are subject to change without notice.
- 8. Performance specification beyond those specified by safety regulations are guaranteed by design and not subject to production test.
- 9. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
- 10. cpc assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using cpc products.

Contact Us

Headquarters

Chieftek Precision Co., Ltd. NO.3, Dali 1st Rd., Xinshi Dist., Southern Taiwan Science Park, Tainan City. 741-45, Taiwan (R.O.C.) 3 TEL: +886-6-505-5858 FAX: +886-6-505-5959 Email : <u>service@mail.chieftek.com</u>

China

Chieftek Machinery Kunshan Co., Ltd.

No.1188, Hongqiao Rd, Kunshan, Jiangsu, P.R. China Tel : +86-512-55252831 Fax : +86-512-55252851 Email : <u>cn.service@mail.chieftek.com</u>

Europe

cpc Europa GmbH Industriepark 314, D-78244 Gottmadingen, Germany Tel : +49-7731-59130-38 Fax : +49-7731-59130-28 Email : <u>info@cpc-europa.de</u>

USA

Chieftek Precision USA Co., Ltd. 2280 E. Locust Court. Ontario, CA 91761, USA TEL: +1-909-773-1200 FAX: +1-909-773-1202 Email : <u>info@usa.chieftek.com</u>

Chapter 1 Installation & Interface

1.1 Software

There are two software tools for adjusting the driver: The cpc Graphical User Interface (GUI, also UI) and the Boot Loader.

- User Interface (UI): To set driver parameters and tune the motor.
- Boot Loader: To flash the firmware to the driver via RS232 communication port. See chapter 4.8.

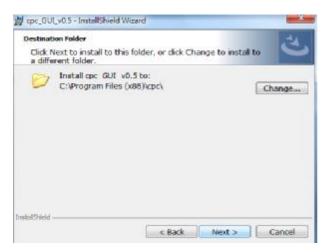
Note: Boot loader is included in the cpc GUI software.

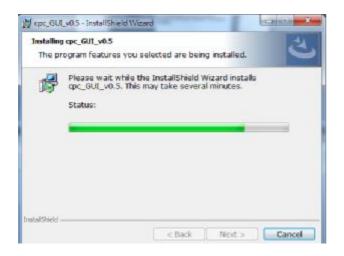
Please download GUI from cpc official website: http://www.chieftek.com/product-Will.asp

1.2 Installation

1.2.1 System Requirements

To execute software smoothly, your computer system should meet the following requirements:


- Storage space: 500 MB
- ı Ram: 4 GB
- OS: windows-vista, win7 and win8/8.1 or later.
- Cable: RS232 to USB port.
- ı CD-ROM driver
- Framework V4.5 or later.

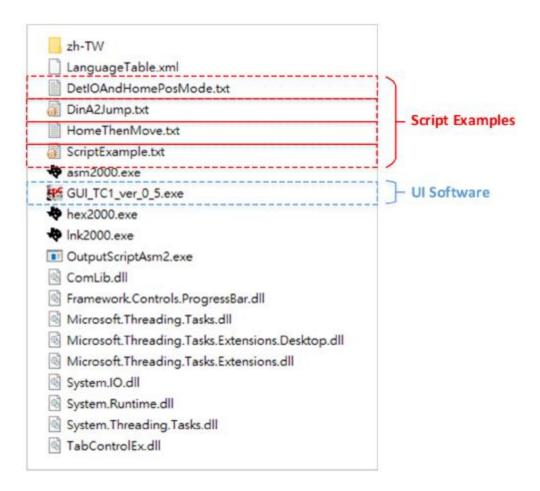

1.2.2 Steps

- 1. Download cpc UI software from cpc official website. http://www.chieftek.com/product-Will.asp
- 2. Framework V4.5 or later is necessary. Install Framework in host computer before installing GUI.
- 3. Click the file "setup.exe" to install UI.

4. Click "Next>".

5. Click "Finish" to complete installation.

 Open the installed folder and double click the "GUI_Will1_ver_0_5" to access UI.


Software path for 64 bit system:C:\Program Files (x86)\cpcSoftware path for 32 bit system:C:\Program Files\cpc

Note: If users can't open the UI software and see a message saying "lacking of dot Net Framework", please install Framework (v.4.5 or later).

1.2.3 Installed Files

There should be 4 text files in ".txt" format—which are the script examples—in the installed file folder in the host computer.

1.1 User Interface (UI)

1.3.1 Interface Elements

The cpc UI has 5 function areas:

- 1 Tool Bar
- ı Side Bar
- 1 Task Panel
- ı Status Bar
- ı Info

Explanations:

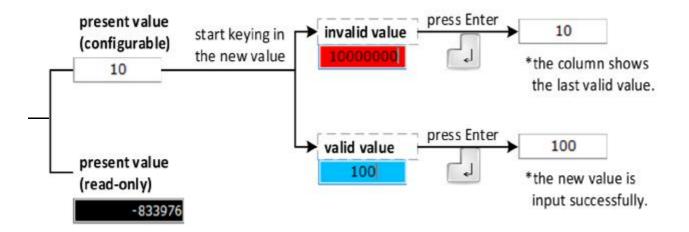
Tool	Contains quick-access buttons for frequently used functions.
Bar	Motor Save Load
	Motor:
	The driver's internal motor-off switch.
	Note: It only switches the motor off, not on.
	Save:
	Saves configured parameters to Drive Flash or to host computer.
	Load:
	Loads user-defined parameters from the file at host computer.
	Loads user-defined parameters from the me at host computer.
Side	Provides a menu to navigate the various function windows.
Bar	
Dai	E Settings
	Driver
	Motor Type
	Motor Protection
	Disable Options
	Feedback
	Auxiliary Command
	Input
	Output
	Boot Sequence
	Error Mapping Position Comparator
	Current
	Phase
	Velocity
	Position
	Gain Switch
	Trial Run
	Homing
	· · · · · · · · · · · · · · · · · · ·
	Script

<	The sidebar can hide or show using the Arrow button.
Task Panel	Allows users to set and test various parameters here and monitor corresponding values.
Status Bar	Shows the status of Driver, Motor, and Error Code (when fault occurs). Driver ON Motor Status Switch On Disable Error Code 0
Info	Contains indicating signals and UI language options to assist monitoring during use. Motor On flag Shase Est. Strror Mapping Aux. Cmd.
	Ext. Enable Home Est. OC Bus Ready Language English V I/O Viewer Motor On flag:
	Shows green when driver's internal states meet the motor-on conditions.
	Phase Est.: Phase Established; shows green when phase-tuning is successfully completed.
	Error Mapping: Shows green when Error Mapping function is activated. Aux. Cmd.:
	Auxiliary Command; shows green when Auxiliary Command is enabled (see side bar).
	Ext. Enable: External Enable; shows green when ALL digital inputs defined as "External Enable Signal" are active. If no digital input is defined, the external enable is active by default.
	Home Est.: Home Established; shows green when Homing is completed successfully.
	DC Bus Ready: Driver's high voltage DC Bus supply is ready for operation. Language:
	Switches languages among English, Chinese (Simplified), Chinese (Traditional), German, and Japanese.

I/O Viewer:
Shows a popup window to indicate the status of Input and Output
pins.

1.3.2 How to Input Parameter Values

- 1. To input data:
 - When configuring, key in values into the column and then press "Enter" to input value.
 - If you didn't press Enter, the data will not be sent to the driver; in this case the last valid value will be used.
- 2. Data validation:
 - If the keyed in value is invalid:


The column becomes red **10000000**; if you still press Enter, it will show the last valid value.

If the keyed in value is valid:

The column becomes blue **100**; after you press Enter, it reverts to white **100**.

Black columns -833976:

Shows read-only parameters. Their values cannot be modified.

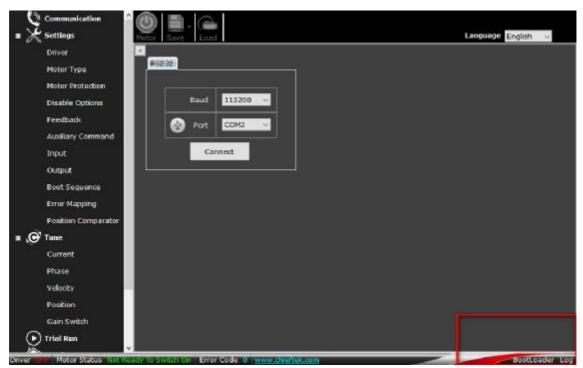
1.4 Boot Loader—Update Firmware

The "Boot-Loader" tool helps you update the driver firmware to the latest version through RS232 port. As long as a firmware <u>xml</u> file is available, users can update driver firmware.

Steps:

1. Download the latest firmware from the cpc official website. Choose the correct model name of the firmware you need.

http://www.chieftek.com/product-Will.asp

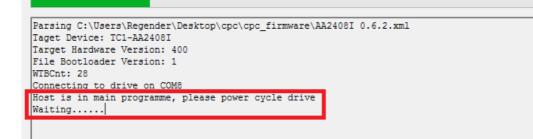


Туре	Description	
catalog	Will series (Motor Servo Driver)	Download
DM	Will series - Will1-D	Download
	cpc GUI Software User GuideVer. 3.0	Download
	cpc Fieldbus Programming Manual_Rev 1.0	Download
manual	cpc Will1 Series Installation Guide_Rev.1.7	Download
manual	cpc Will-B Series Installation GuideVer.2.0	Download
	cpc Servo Drive-CiA 301 Communication Manual_Rev.1.0	Download
	cpc GUI 0.4.48	Download
software	cpc GUI 0.5.14_Beta	Download
	Will1-8_230 V1 FW0.7.15R	Download
	Will1-8_230 V2 FW0.7.27	Download
	Will1-20_230_FW0.7.27	Download
firmware	Will1-B3_230_CAN_HW0.3_FW0.7.27	Download
	Will1-B3_230_ECAT_HW0.3_FW0.7.27	Download
	Will1-B9_230_CAN_HW0.3_FW0.7.27	Download
	Will1-B9_230_ECAT_HW0.3_FW0.7.27	Download

- 2. Unzip the downloaded file.
- 3. Go back to the UI. Disconnect the driver (side bar > communication > click "Disconnect").

Baud 115200 V	RS232	
Port COM2 🗸	Baud	115200 ~
	🔮 Port	COM2 V
Disconnect	onnect	

4. After disconnection, click on the bottom right corner of UI window to access the boot loader.


The Boot Loader interface will jump out automatically.
 Now, make sure again your communication cable (for example: USB-RS232 cable) is connected with the driver and host computer.

Next,

- (1) Click "Scan Ports" button.
- (2) Choose serial port number.
- (3) Click on "Choose" and locate the firmware file (it is the downloaded file which is in ".xml" format. For example: Will1-8_230 HW0.5 FW0.7.14.xml).
- (4) Click "Start" button.

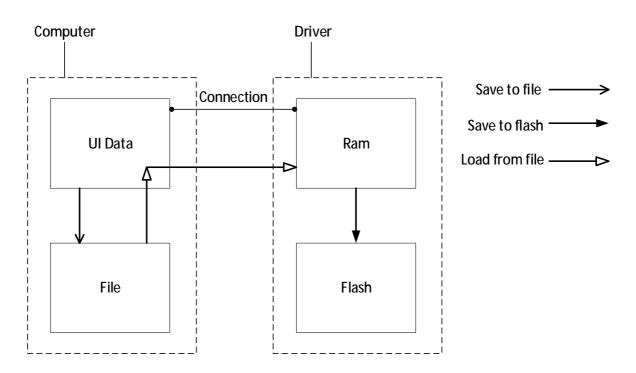
Bootloader	×
COM8 2. Firmware File: Choose Scan Ports 1. Firmware File Device Name: Connected Device Name: Start 4. Connected Device Hardware Version:	3.
	^
	~

6. When bootloader shows the message "Host is in main programme, please power cycle drive Waiting.....", turn off the driver and turn on again.


```
Sending Header for WTB#2...complete
Write to flash WTB#2.... complete
Sending Header for WTB#3...complete
Sending data for WTB#3.....complete
Write to flash WTB#3.... complete
Sending Header for WTB#4...complete
Sending data for WTB#4.....complete
Write to flash WTB#4.... complete
Sending Header for WTB#5...complete
Sending data for WTB#5.....complete
Write to flash WTB#5.... complete
Sending Header for WTB#6...complete
Sending data for WTB#6.....complete
Write to flash WTB#6.... complete
Sending Header for WTB#7...complete
Sending data for WTB#7.....
```

Sending data for WTB#23.....complete Write to flash WTB#23.... complete Sending Header for WTB#24...complete Sending data for WTB#24.....complete Write to flash WTB#24.... complete Sending Header for WTB#25...complete Sending data for WTB#25.....complete Write to flash WTB#25.... complete Sending Header for WTB#26...complete Sending data for WTB#26.....complete Write to flash WTB#26.... complete Sending Header for WTB#27...complete Sending data for WTB#27.....complete Write to flash WTB#27.... complete Checking Host firmware status Host firmware is ready to boot, restarting under new firmware. Update process completed successfully

 When the message "Update process completed successfully" shows up, the firmware burning is completed. The whole flash process may take 3~5 minutes.


1.5 Save and Load Driver Data

The driver data and parameters can be saved and loaded thorough UI. The "Save" and "Load" buttons are on the Tool bar.

- Upon connecting the driver with host computer, most of the driver data will be copied from driver's RAM to UI Data.
- When parameters are modified, they can be saved to File (which is at host compute) or to driver's Flash.

Meanwhile, if parameters are saved in the File, UI can load these parameters from File to driver.

Save:

- Save to FILE: Save the parameters from UI Data to File.
- Save to FLASH: Save the parameters from driver's RAM to driver's Flash.
 <u>Note</u>:

Users can only save to Flash while the motor-on flag is off (in red color).

Load:

- Load the parameters to driver's RAM and UI Data.
- Click Load and locate your file. The file should be in .cfg format.

Users may load driver parameters from the driver itself automatically, or load data from the File which is saved at host computer, or create new parameters. Choose a source to load data and then start setting up the cpc driver.

Meanwhile, the motor parameters—including values and units—are shown in the "Parameter" index under the route of Settings > Driver.

Driver	<				
Motor Type	Information Pa	rameter Fe	ature Revision	Others	
- Maria Mariana	Variable	Value	Unit		
Motor Protection	OurCont	2.8	A		
Disable Options	CurPeak	16	A		
The second states and so the states of	Curli2T	1000	ms		
Feedback	PosMax	0	mm		
Auxiliary Command	PosMin	0	mm		
aa.a	Velapp	1000	mm/s		
Input	QickStopDec	50000	mm/s ²		
output	Encoder Type	0			
Boot Sequence	HallSource	0			
Boot Sequence	IniMode	0			
Error Mapping	EndResit	2000000	cnts/m		
Position Comparator	PolePitch	30	mm		
	Curkp	14.67168			
Tune	Curkî	0.1322187			
) Trial Run	CurkpRFF	0	1		
	PosKp	52.7028			
Homing	PasKi	0			
Scope	PosIKp	0			
	Posiki	0			
Script	PosIKd	0			
Error Log	Velkp	2.98279E-06			
enorcog					

1.6 Setting Process

The information in this UI user guide is arranged in sequence as follows:

Chapter 2, Communication—explains how to connect the cpc driver with host computer.

Chapter 3, Wizard—explains how to set motor parameters and tune the driver step by step using Wizard.

Chapter 4, Setting—describes how to set motor limits, motor types, parameters, feedback, auxiliary command, I/O, boot sequence, and error mapping.

Chapter 5, Tune—describes the autotune procedure, trace, and fine tune procedure using bode plot and time response. The advanced tuning tools, such as gain switch and filter, are described herein.

Chapter 6, Trial Run—describes how to run a motor after the primary parameters, current loop, velocity loop, and position loop have been tuned.

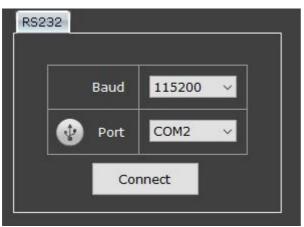
Chapter 7, Homing—describes several homing methods and how homing is performed.

Chapter 8, Scope—explains how to use scope tools to measure and record driver data.

Chapter 9, Script—explains and shows how to edit motor motion commands using Script.

Chapter 10, Error Log—explains why an error message occurs and what each error code means.

Chapter 2 Communication



RS232 Port:

Users should prepare a USB-to-RS232 serial adapter as well as cable to connect the driver with host computer.

Setting steps:

1. After accessing the UI, set Baud rate at 115200 and select a Port. Then, click "Connect".

2. Wait for connection.

3. When the columns turn grey, it means the driver and the host computer are successfully connected.

Chapter 3 Wizard

Wizard provides a step-by-step guidance for tuning motor parameters and configuring parameters. It enables users to set up rapidly and conveniently. Usually, after the drive is powered and successfully connected with a host computer, users will need to do the following: Define motor parameters, set motor protection limits, define encoder resolution, specify I/O pins, tune motor, perform homing, and finally save all parameters to driver flash.

The cpc UI wizard has a <u>flow-setting page</u> for users to apply default parameters of some of the cpc motors as well as Tamagawa motors AND to designate setting step(s). In addition, users can define a new motor of their own.

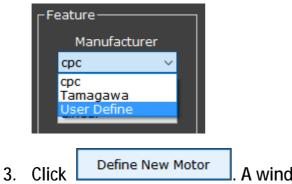
Choose motor, write data	() 🗎 🍋	Motor On flag 🍚 🛛 Phase Est. 🥯	Error Mapping 🥮	Aux. Cmd. 🥯	
and the second se	Motor Save Load	Ext. Enable 😔 🛛 Home Est. 🥮	DC Bus Ready 🈔	Language Englis	h 🗸 1/0 Viewer
S Not Chos	- Feature	- Motor Data			
Trial Run	Manufacturer	Name	Value	Unit	- Clini
En Trial Run	cpc v	Phase Find Mode	0		Clic
Homing	Motor Type	Motor Type	0		W
M Scope	Linear ~	Feedback Selection	0		mo
Script		Motor Peak Current Time	1000	ms	paramet
	Iron Type	Pole Pitch	15	mm	into Dr
Error Log		Peak Current	10	Apk	into Di
	Series	Con. Current	2,5	Apk	- N
2 Colort your	PM ~	Back EMF Constant	8.6	V/m/s	
2. Select your	Model	Resistant	4.6	Ohms	
motor model	PM4 ~	Inductance	0.18	mH	
	Winding Code	CurrentKp	1.25		
	W1 ~	CurrentKi	0.68		Write to D
Add (or delete) a		Select setting flow and click M		ect setting (p window) to cor	tinue Auto Tur

< Flow-Setting Page>

To Use Wizard:

- 1. Click [Wizard] wizard to show the popup window.
- 2. On the Feature panel, select a cpc or Tamagawa motor model that you're using.
- 3. Click [Write to Drive] Write to Drive
- 4. Decide your setting flow by ticking/unticking the process boxes.

Motor	Encoder	Current	Digital	Digital	Tune	Auto	Turne
Type	Resulction	Limit	Input	Output	Current	Phasing	Velocity


5. Go to popup window and click "Next" to continue.

6. Then keep following wizard's guide until the "Save to Flash" step.

Define a New Motor:

- 1. Click [Wizard] wizard to show the popup window.
- 2. On the Feature panel, select "User Define" from the manufacturer list.

. A window will show up.

4. Name the new motor. Fill in each motor parameter and then click "Next".

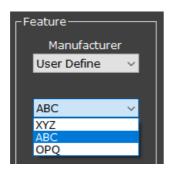
New Motor		×	_
Motor Name			Press "Enter"
Motor Type	Linear v		
Peak Current	0	Apk ~	after keying in parameters.
Continuous Current	0	Apk ~	parameters.
Peak Current Time	1000	ms	
Pole Pitch	0	mm	
	Previous	Next	


5. Select encoder type (Feedback Selection) and key in encoder resolution. Then click "Finish".

New Motor	×
Feedback Selection Incremental A / B v	
Encoder Resolution 0 counts per meter	
Previous Finish	

6. Click [Write to Drive] Write to Drive and select what to be included in the setting flow:

Motor	Encoder	Current	Digital	Digital	Tune	Auto	Tune
Type	Resulction	Limit	Input	Output	Current	Phasing	Velocity
						2	


7. Go to the popup window and click "Next" to continue.

- 8. Then keep following wizard's guide until the step "Save to Flash".
- I The data file of user-defined motor can be found at: C:\Users\see Note*\AppData\Roaming\cpc Note*: Fill in the account username being used in host computer system.

Delete a User-Defined Motor:

- 1. Click [Wizard] **Wizard** to show the popup window.
- 2. On the Feature panel, select "User Define" from the manufacturer list; then select the name of the user-defined motor which is to be deleted.

- 3. Click Delete Present Motor
- 4. A dialogue box will show up. Click "OK" to delete data.

Warning			
	Delete pres	ent motor data?	
	ОК	Cancel	

For more detailed and complete information about setting and tuning please refer to the following chapters:

3.1 Motor Type

Select motor type (Linear or Rotary) and the mode you need.

Linear motor has 2 operation modes:

Normal and Optimized. See chapter 4.2 for further information.

Rotary motor has 4 operation modes:

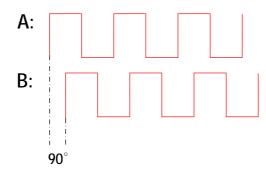
Normal, Optimized, Only Negative, and Only Positive. See chapter 4.2 for further information.

3.2 Motor feedback

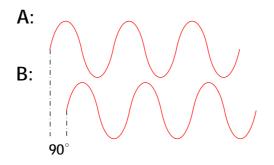
Set motor feedback parameters under the "Feedback" section in UI.

a. Feedback Selection:

Various signal types of encoder are supported by the cpc drivers:


Will1 Drivers:

Supports Incremental signals.


Will1-B Drivers:

Supports incremental A/B, Sin/Cos, BiSS-C, and Tamagawa encoder signals.

Ø Incremental Encoder A/B:

- b. Hall Source:
 - Feedback Port:

Assigns the digital input pins at Feedback port as hall sensor signal source.

Controller Port:

Assigns the digital input pins at Controller port as hall sensor signal source.

c. Motor Encoder Resolution:

Sets the resolution (in micro meter) of the encoder.

Be careful while configuring the encoder resolution—especially when reducing the resolution scale.

Note:

Position, velocity, and acceleration protection (count) values cannot be over 32-bit integer range.

d. Motor Pole Pitch:

Sets the length of one set of pole pitch (in millimeter) of the motor.

3.3 Motor Protection

Fill in motor parameters respectively:

Check Values	(0) 🖹 🖳	Motor On flag 🥮	Phase Est. 🥮 Error Map	ping 🥮 🛛 Aux. Ci	md. 🥮
	Motor Save Load	Ext. Enable 🍚	Home Est. 🥮 DC Bus Re	udy 🍚 🛛 Langua	English 🗸
Parvisos Next Class	<				
Driver	Current Velocity Position	on Modulo Motor St.	ick Power Stage		î
Motor Type					
Motor Protection					
Disable Options					
Feedback					
Auxiliary Command					
Input					
Output					
Boot Sequence					
Error Mapping					
Position Comparator					
II (O' Tune					
Trial Run					
👚 Homing	Motor Peak Curre	nt 4.000	A Motor Peak Current 1	ime 1000	ms
WA Scope	Motor Continuous Curre		A .		
Script	Current Reach Windo	0.0	A Current Reach Time	iout D	ms
🛕 Error Log					
Driver ON Motor Status Switch O	n Calable Error Code 0	www.chieftek.com			Log

a. Motor Peak Current / time:

The maximum transient current allowed for the motor and the corresponding time, in amperes and milliseconds.

b. Motor Continuous Current:

The maximum continuous current allowed for the motor, in amperes.

Note:

Please check the parameters mentioned in a. and b. carefully.

These parameters relate to the stability and safety of the system. Please make sure you fill in correct data!

3.4 Input & Output

		jan.	Motor On flag 🥌	Phase Est.	🕘 Error Mapping 🥮	Aux, Cmd. 🥮
Set Input Trigger	Motor Save	Load	Ext. Enable 🤤	Home Est.	DC Bus Ready 🥥	Lauguage English 🗸
Pavices Not Class	< Pin No.	Invert	Function			Chipson +
n (O' Tune	Din-A0		Nona			
	Din-A1		None ~			
Trial Run	Dm-A2	• □	None ~			
Homing	Din-B0		None ~			
W Scope	Din-B1 Din-B2		None ~			
📑 Script	Dim-B3		None ~			
Error Log	Din-64		None ~			
	Din-85		None ~			
	Cin-C0	• □	None ~			
	Din-C1 Din-C2		None ~			
	Unicz	•	None 🗠			
Driver ON Motor Status Switch	UN DISORIE EFFO	r Code () 🔐	vw.chuit.ek.com			Log
Set Output Trigger	Motor Save	Load	Motor On flag 🥮 Ext. Enable 🍚	Phase Est. Home Est.	🎒 Error Napping 🥌 🎒 DC Bus Ready 🍋	Aux. Cmd. 🥮 Language English 💛
Previous Kend Chor-	< Pin No.	Test	and the second se	nction		
a , 🕒 Tune	Dout-A0		None None	~		
(F) Trial Run	Dout-41 Dout-80		None None	2 2		
Homing	Dout-CD		None None			
10000	Dout-C1		None None	~		
Scope	Dout-C2		None	~		
Script						
A Error Log						

The I/O pin definitions of feedback and controller ports are elaborated in driver's *Installation Guides*.

Note: More detailed information please see <u>chapter 4.7 Input & Output.</u>

3.5 Tune – Current

After configuring motor data and digital input/output, users can start tuning the Current, Phase, and Velocity.

Tune with current mode	🔟 📳 📇 Matar On Flag 🥮 Phase Est. 🥮 Error Mapping 🥮 Aux. Cmd. 🥌
	Mobor Sava Load Ext. Enable 🥹 Home Est. 鑸 DC Bus Ready 🍚 Language English 😔
Previous Next Class	Current Loop Advanced Option
B (O' Tune Triel Run Homing M Scope	CurkpRFF 0 Curkp Curki
Script	13.79961 0.1348132 Current Feedback
	AutoTune Frequency Response Time Response
	Test Current 100 % of Continuous Current
	Frequency Start 100 Hz Frequency End 4000 Hz
	Stable Fast
	Tune
Driver ON Motor Status Ewicer	Ch Disable Error Code o www.chiettek.com

a. Test Current:

Percentage of continuous current.

b. Frequency Start/End:

Frequency response range.

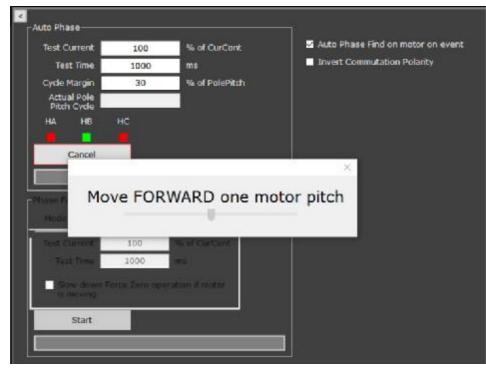
To tune Current:

- 1. Click the "Tune" button, UI will tune the gain automatically.
- 2. Wait till the "Done" signal shows up, it means tuning is completed.

Tune
Done

3. Next, tune the Phase.

Note: Auto tuning is only for reference!


3.6 Tune – Phase

Steps:

1. Click "Start AutoPhase".

Complete AutoPhase) 🖹 (🕳)	Motor On flag 🔮	Phase Est. 🔮	Error Mapping 🥥	Aux, Cmd. 🥌
22	tor Save Load	Ext. Enable 😔	Home Est. 🧺	DC Bus Ready 🥪	Lappuage English ~ 1/O Viewer
Farmer Rest Clow	- Auto Phase				
B (O' Tune		54	-1	🖬 Auto Phase Find	
Trial Run	Test Current	100 % of Cu	rCont		
Homing	Test Time	1000 ms		Invert Commutat	ben Polarity
	Cycle Margin	30 % of Po	lePitch		
WA Scope	Actual Pole Pitch Cycle				
📑 Script	2. CONTRACTOR (1997)	HC .			
🛕 Error Log					
	Start AutoPhase				
		_			
	Phase Find				
	Mode Force Zero	÷			
	Test Current	100 % of CurCi	ont		
	Test Time	1000 ms			
	Elow down For	ce Zero operation if mot	~		
	is moving	te zelo operación il moti	*		
	Start				
	5	need a standard			
Driver ON Motor Status Switch On D	11.bie Error Code u	www.cmeitek.com			

2. Move the motor manually at least one pole pitch in positive direction.

- Auto Phase Auto Phase Find on motor on event % of CurCont Test Current 100 Invert Commutation Polarity 1000 Test Time 30 % of PolePitch Cyde Margin ctual Pole Pitch Cycle HR HK Cancel Start phasing? Yes Cancel 1000 Start
- 3. Click "Yes" to start phasing.

4. Wait until you see the message "Auto Phase Done".

CAuto Phase			1
Test Current	100	% of CurCont	Auto Phase Find on motor on event
Test Time	1000	ms	Invert Commutation Polarity
Cycle Margin	30	% of PolePitch	
Actual Pole Pitch Cycle	59665		
Start AutoPhase			
	Auto Phas	e Dane	
Phase Find			=
Mode Force Ze	na V		
Test Current	100	% of CurCont	
Test Time	1000	ms	
Slow down Fe is moving	orce Zero ope	ration if motor	
Start			

a. Test Current:

Percentage of continuous current.

b. Test Time:

Testing time.

c. HA, HB, HC:

Hall sensors status.

3.7 Tune – Velocity

Tuning the velocity gain is similar to tuning the current gain.

1. Click "Tune" button.

Tune with velocity mode		Motor On flag 🥮	Phase Est. 🥮	Error Mapping 🥮	Aux. Cmd. 🥮	
	Motor Save Load	Ext. Enable 🥯	Home Est. 🥮	DC Bus Ready 🍛	Language English	~ 1/O Viewer
Personal Read Clove	8					
a "G' Tune	Velocity Loop Gain Auto C	VelKpAT	deanced updon			
Trial Run	GainSet 1st 🗠 🌱	3.940542E-05	101			
Homing		VelKpVI				
MA Scope		9.584704E-08	100			
Script	Valko	Velki		6		
A Error Log	5.629E-06	0.0075	- + Filter	-		
				-		
			Velocity Feedba	ck.		
	l					
	AutoTune Frequency Resp	ionse Time Respor	nse			
	Distance Limit	15 mm				
	Valocity Limit	60 mm/s				
	Acceleration Limit 12	2500.001 mm/s ²				
	Stable		Fast			
	Tune					
	Turie					
Priver CIN Motor Status Switch C	n Disakle Error Code 👔 ww	www.ineffeixcom				

2. When the "Done" signal shows up, tuning is completed.

3.8 Save to Flash

Click "Save to Flash" to save parameters to the drive Flash.

If you wish to save to a file in your computer, select "Save to File" and then designate a route.

Save To Flash	() 🕒	Motor On flag 🌍	Phase Est. 🌍	Error Mapping 🍚	Aux. Cmd. 🥮
	Motor	Ext. Enable 😔	Home Est. 🥮	DC Bus Ready 🍚	Rangunge English 🗸
Previous	< Save To Hash				
n "🕞 Tune	Velo Save To File	ulate File			
Trial Run					
Homing	Type	Frequency	Damping		
MA Scope	Low Pass	10000	0.35		
S script	OFF	5000	0.707		
Error Log	OFF	~ 5000	0.707		
2-axet	L r				
			-		
	AutoTune Frequency R	espanse Time Respo	nse		
	Distance Limit	15 mm			
	Velocity Limit	60 mm/s			
	Acceleration Limit	25000 mm/s			
	Stable	- a 🛣 - a se	Fast		
	Tune				
Driver ON Motor Status Switch	in La riele Error Code U	WWWWARTS CONTRACTOR			Log

Chapter 4 Settings 💥

Setting procedure includes configuring the motor type, motor protections, disable option, boot sequence, and those mentioned in the Quick Start chapter (feedback, input, and output). In practice, the driver often needs to receive signals from controller; hence, the "Auxiliary Command" section is for setting the connection between controller and driver.

4.1 Driver

The "Driver" section contains basic information and parameters of cpc drivers.

4.1.1. Information

Shows basic information of the driver, including hardware/firmware revision, input voltage, output continuous current, and peak current.

Inf	ormation Parameter	Feature Revision	Others	
	Model	TC1-B9/230-E	CAT	
	Assembly Number]
	Hardware Revision	00.100		
	Firmware Revision	0.7.14		Update Firmware
	Input Voltage	AC 100~240	v	
	Output Amp Cont.	9	А	
	Output Amp Peak	20	A	

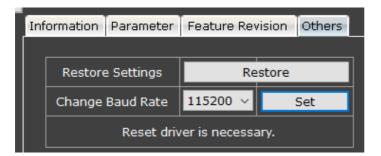
a. Update Firmware:

Click to update driver's firmware.

Note:

Before updating, make sure you have downloaded the latest firmware revision from cpc official website.

4.1.2 Parameter


Shows the values and units of variables.

4.1.3 Feature Revision

For cpc internal reference.

It shows the firmware revision of each subordinate part.

4.1.4 Others

a. Restore Setting:

Click to reset to the default settings.

b. Change Baud Rate:

The default baud rate is 115200.

Note:

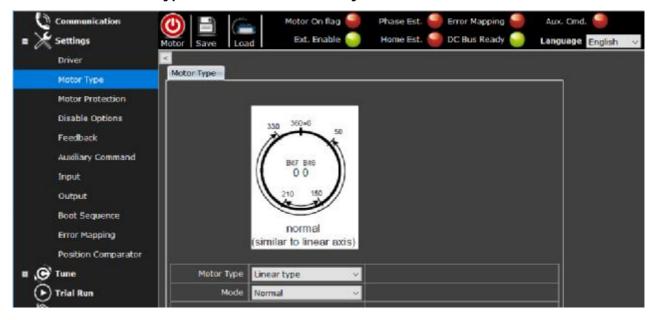
- Any baud rate above 115200 is not supported.
- Please RESET the driver after changing baud rate setting.

Baud rate setting steps:

- (1) Select a driver baud rate, say 57600. Then click "Set".
- (2) Click "OK" when the warning message "Change baud rate to 57600?" shows up.

Information	Parameter	Feature Revision	Others
		i	
Restore	e Settings	Restore	
Change	Baud Rate	57600 🗸	Set
	Reset driv	er is necessary.	
W	/arning		
	3		
		Change baud rate	to 57600?
		OK	Cancel

- (3) Power off the driver.
- (4) Power on the driver again.
- (5) When the startup screen shows up, choose the new baud rate you selected (in this case "57600") and choose connection port. Then click "Connect".


RS232	
Baud	115200 ~
Port	2400 4800 9600 19200
Co	38400 nr 57600 115200 230400
	460800 921600

(6) Wait a few seconds. If words in the columns turn grey, this means the communication is successfully built.

RS2	32	
	Baud	57600 🗸
	🔮 Port	СОМ2
	Disco	onnect
	1990. 	

4.2 Motor Type

Choose the Motor Type and Mode that suits your needs.

The "Motor Type and Mode" table below shows each motor-mode's effect on <u>Position Limit</u> (i.e., Command Forward/Backward Limit) and <u>Position Range</u> (i.e., modulo); see explanations on next page. The following chapters elaborate on details of these 6 type-mode combinations.

< Motor	Type and Mode >
	••

Motor Type :	Linear			Rotary						
Motor Mode :	Nor	mal	Optimized		ptimized Normal		Only Negative (CCW)	Only Positive (CW)	Optin	nized
Position Command Type	Abslt.	Rel.	Abslt.	Rel.	Abslt.	Rel.	Abslt.	Abslt.	Abslt.	Rel.
	Abslt.: absolute. Rel.: Relative.									
Position Limit (= Command Forward /Backward	Y		Y N		ו	Y Y		(Y	
Limit)		١	: User	Users need to define. N: Users do not need to de			t need to define	e.		
Position Range	>	ĸ	>	ĸ	0 X		K	C	D	
(= modulo)							sition range is a on range is not		·	

- 1. Explanations of the <Motor Type and Mode> Table:
 - (1) Motor Type:

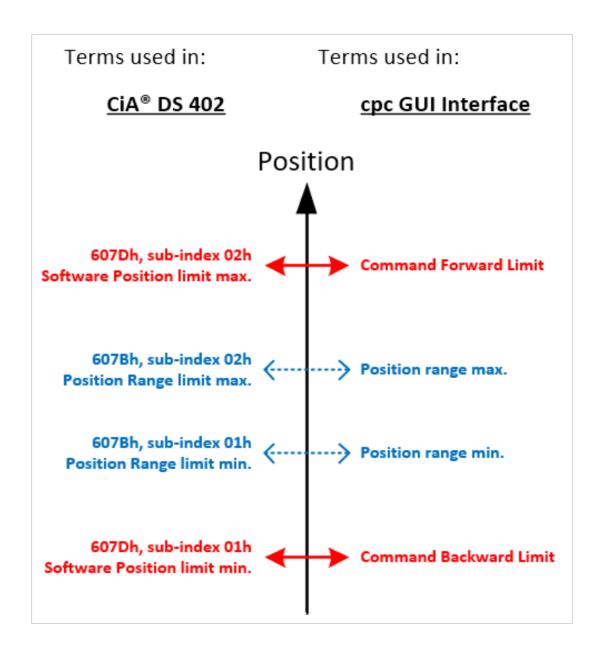
Linear or rotary.

(2) Motor Mode:

The modes that each motor type includes. See detailed characteristic of each mode in subsequent chapters.

(3) Position Command Type:

Giving absolute or relative position commands when operating motors.


- (4) Position Limit:
 - i. It refers to the term "607Dh"—the Software position limit—in CiA® 402 Draft Standard Proposal.
 - ii. <u>Note</u>: Perform Homing before setting the Command Forward /Backward Limit in UI.
 - iii. As explained in CiA[®] 402 Draft Standard Proposal: ... This object shall indicate the configured maximal and minimal software position limits. These parameters shall <u>define the absolute position</u> <u>limits for the position demand value and the position actual value</u> as specified in Figure 23. Every new target position shall be checked against these limits.

<u>To disable the software position limits, the min position limit</u> (sub-index 01h) and max position limit (sub-index 02h) shall be set to 0. The limit positions shall be given in user-defined position units (same as target position). Supervision of software position limits requires a defined home position.

iv. <u>Where to set Position Limit in cpc GUI</u>:

Motor Protection > Position > the columns of "Command Forward Limit" and "Command Backward Limit".

- (5) Position Range (i.e., Modulo):
 - i. It refers to the term "607Bh"—the Position range limit—in CiA® 402 Draft Standard Proposal.
 - ii. <u>Note</u>: Please perform Homing before setting Position range Max./Min. in cpc UI.
 - iii. As explained in CiA[®] 402 Draft Standard Proposal: ...This object shall indicate <u>the configured maximal and minimal position range</u> <u>limits</u>. It shall limit the numerical range of the input value. <u>On</u> <u>reaching or exceeding these limits, the input value shall wrap</u> <u>automatically to the other end of the range</u>. Wrap-around of the input value may be prevented by setting software position limits

as defined in software position limit object (607Dh). <u>To disable the</u> position range limits, the min position range limit (sub-index 01h) and max position range limit (sub-index 02h) shall be set to 0.

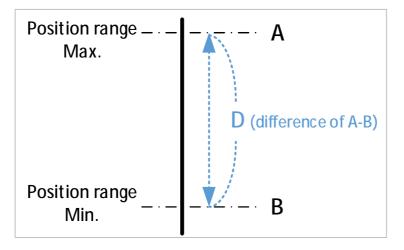
iv. Where to set Position range in cpc GUI:

Motor Protection > Modulo > the columns of "Position range Max." and "Position range Min."

Communication	tor Save Load	Notor On flag 🥮 Ext. Enable 🌍	Phase Est. 🍯 Home Est. 🍯	Error Mapping 🥮 DC Bus Ready 🌍	Aux. Cmd. 🥮 Language English	5
Driver						
Motor Type	Surrent Velocity Position	an Module Notor St.	idk Power Stage			
Motor Protection						
Dicable Options						
Feedback						
Auxikary Command						
Input			15.5			
Output	Position range Max. Position range Min.		mm			
Boot Sequence			mm			
Error Mapping						
Position Comparator						
a 🕞 Tune						
🕞 Trial Run						
Homing						
价A Scope						
📑 Script						
A Error Log						
Driver on Motor Status Switch Circ.				_		Leg

- 2. This major rule applies to all combinations of motor type, motor mode, and position command type: If position command exceeds or is lower than the Position Limit, this command will be ignored.
- 3. <u>Note</u>:

Based on cpc's design for the setting of (4) Position Limit and (5) Position Range, if you set the minimum value to 0 and the maximum value to 1000, your target position command can be 0 or 1000.

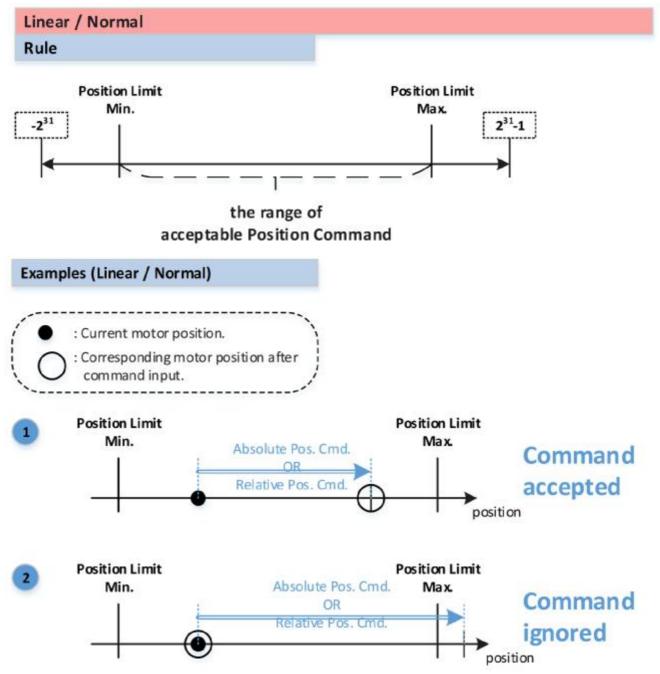

4. "Optimized" mode will take the shortest way to reach the target position. In addition, if you choose to give relative target position command under optimized mode, the "absolute value" of your position command must be less or equal to half of Position Range (i.e., modulo); otherwise the command will be ignored. See further explanation below.

Formula:

Suppose (1) the value of your Relative position command is X (units).

(2) The values of maximum and minimum of Position Range are A and B;

(3) The difference between A and B is D (units).



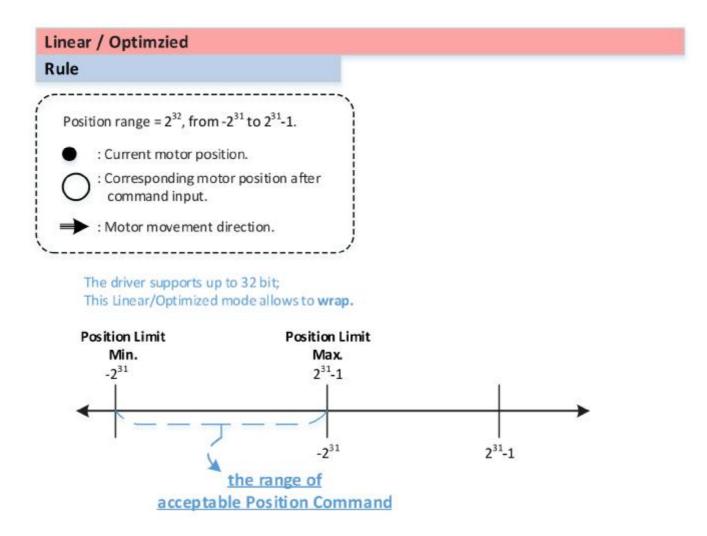
$$A - B = D$$
 units,
 $|x| \le \frac{1}{2}D$.
Hence, $-\frac{1}{2}D \le X \le \frac{1}{2}D$.

Please see characteristics of each mode on subsequent pages.

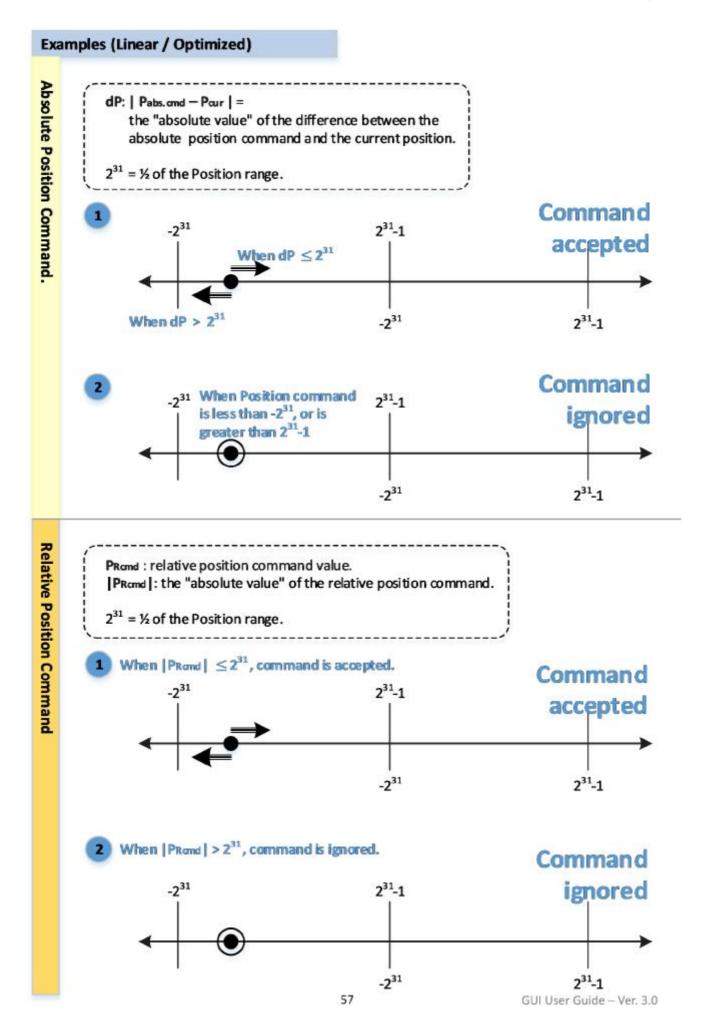
4.2.1 Linear Motor / Normal Mode

- 1. The motor moves within Position Limit (607D).
- 2. No Position Range (607B) (Position Range Max. and Min. will show 0 in GUI).
- 3. If target position command exceeds or is lower than the Position Limit, the command will be ignored.
- 4. If relative position command will exceed or be lower than the Position Limit, the command will be ignored.

4.2.2 Linear Motor / Optimized Mode


- 1. This Linear/Optimized mode is for special application, such as operating a motor with high-resolution encoder.
- 2. No Position Limit (607D) (Position Limit Max. and Min. will show 0 in GUI).
- 3. The Position Range (607B) under this mode is the maximum and minimum of 32bit (i.e., from -2³¹ to 2³¹-1).
- 4. Absolute position command:
 - When the [dP]* is less or equal to half of the Position Range (i.e., 2³¹), the motor will move in positive direction; vice versa.

*: [dP] is the distance between the absolute position command and the present position; namely, it is the "absolute value" of the distance difference between the absolute position command and the current position.


- If the command exceeds or is less than the Position Range, it will be ignored.
- 5. Relative position command:

The "absolute value" of your relative position command must be less or equal to half of the Position Range (i.e., 2³¹); if relative command exceeds so, it will be ignored.

See illustration and examples on subsequent pages.

See examples on next page.

4.2.3 Rotary Motor /Normal Mode

- 1. Position commands can exceed Position Range; if reaching or exceeding the Position Range, the input value will wrap.
- 2. If absolute position command exceeds Position Limit, the command will be ignored.
- 3. If relative positioning will exceed Position Limit, the command will be ignored.

4.2.4 Rotary Motor / Only Negative (CCW)

- No "607B" (Position Range) (Position Range Max. and Min. will show 0 in GUI).
- 2. Rotates only in negative direction.
- 3. If target position command is higher than actual position, the motor will rotate to the minimum Position Limit and then wrap.
- 4. If absolute position command exceeds Position Limit, the command will be ignored.

4.2.5 Rotary Motor / Only Positive (CW)

- No "607B" (Position Range) (Position Range Max. and Min. will show 0 in GUI).
- 2. Rotates only in positive direction.
- 3. If position command is lower than actual position, the motor will rotate to the maximum Position Limit and then wrap.
- 4. If absolute position command exceeds Position Limit, the command will be ignored.

4.2.6 Rotary Motor / Optimized Mode

- 1. Absolute position command:
 - (1) cannot exceed Position Limit and Position Range, otherwise the command will be ignored.
 - (2) If the difference between the current position and Absolute position command is larger than half of Position Range, the motor will move in negative direction.
- 2. Relative position command:
 - (1) cannot exceed Position Limit, otherwise the command will be ignored.
 - (2) The "absolute value" of the relative position command must be less or equal to half of Position Range, otherwise the command will be ignored.

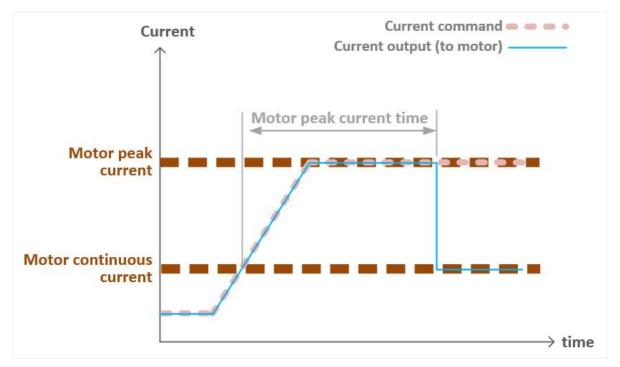
4.3 Motor Protection

Motor Protection is for safety and ensuring the stability of the motor. The main protections—such as current limits, over speed limit, backward limit, and forward limit—are set under Motor Protection section. For safety purpose, please check the parameters carefully.

4.3.1 Current

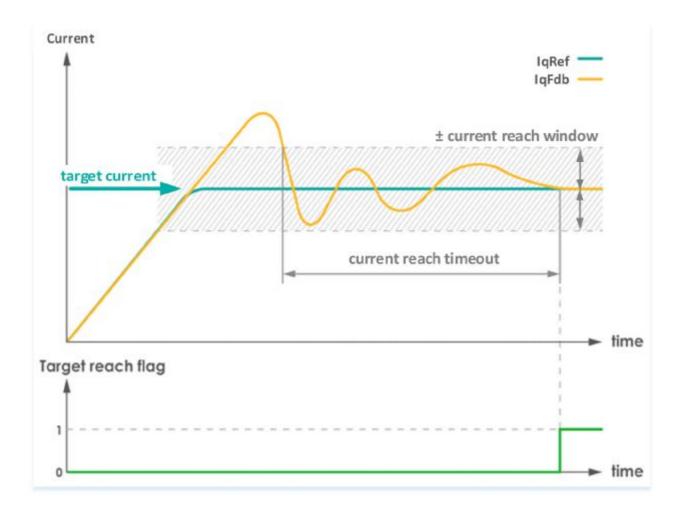
Motor Peak Current	4.000	A	Motor Peak Current Time	1000	ms
Motor Continuous Current	2.000	A			
Current Reach Window	2.000	А	Current Reach Timeout	0	ms

a. Motor Peak Current:


The maximum transient current acceptable for the motor.

b. Motor Peak Current Time:

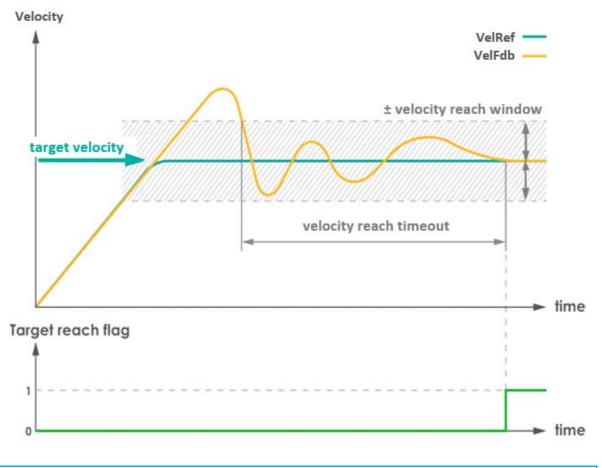
The maximum time of peak current acceptable for the motor.


c. Motor Continuous Current:

The maximum continuous current acceptable for the motor.

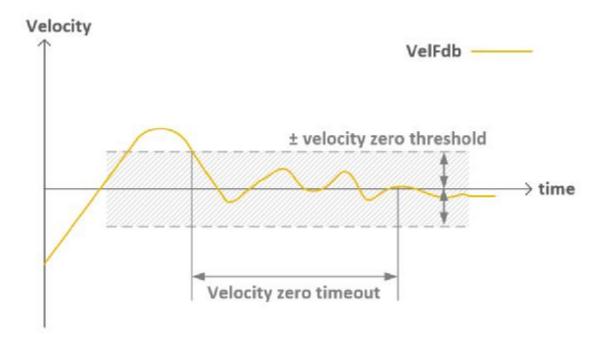
- d. Current Reach Window / Timeout:
 - The condition of current target reach flag and the corresponding time.
 - When current feedback is within the window and continues for a period (reach timeout), the target reach flag will rise. When the time is set to 0, this detection function will be deactivated.

The current-time diagram below describes how "current reach window" and "current reach timeout" work.

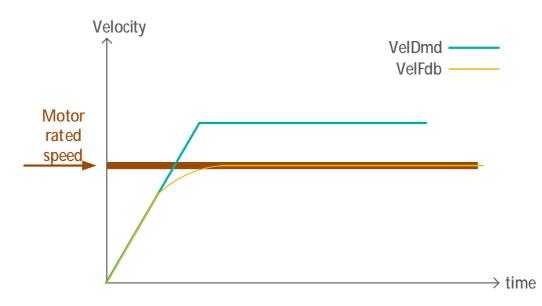


IqFdb refers to current feedback; likewise, velocity applies the same method to rise target reach flag and to determine whether the reference command is met. Please check <u>chapter 5.5.4 Target reach flag</u>

4.3.2 Velocity

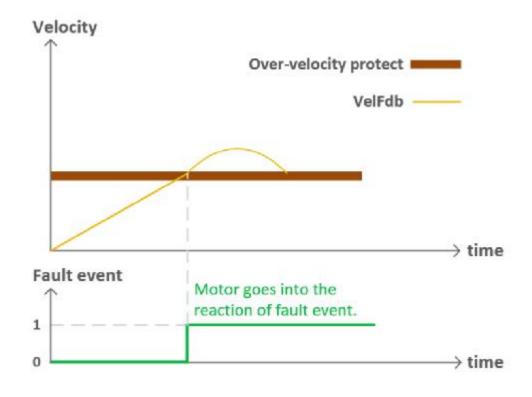

Velocity Reach Window	2000	cnt/s	Velocity Reach Timeout	5	ms
Velocity Zero Threshold	1000	cnt/s	Velocity Threshold Timeout	1	ms
Motor Rated Speed	750.000	mm/s	QuickStop Deceleration	50000.000	mm/s²
Over Vel. Fault Limit	1250.000	mm/s			

- a. Velocity Reach Window / Timeout:
 - The condition of velocity target reach flag and corresponding time.
 - When the velocity feedback is within the reach window and continues for a period (reach timeout), the velocity target reach flag will rise.
 - When the time is set to 0, this detection function will be deactivated.


Please check the Chapter 5.5.4 Target reach flag

- b. Velocity Zero Threshold / Timeout:
 - When the velocity feedback is within the threshold and continues for a period (velocity zero timeout), such velocity feedback will be deemed as zero.
 - When the time is set to 0, this detection function will be deactivated.

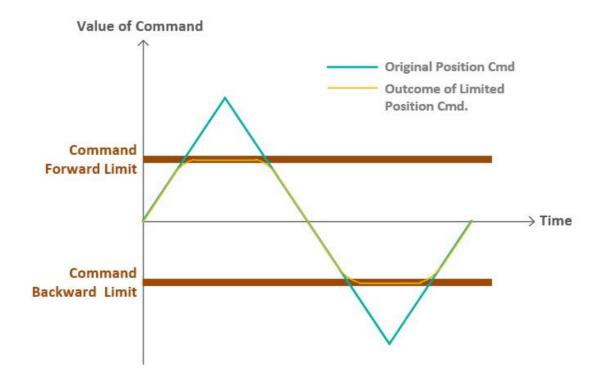
c. Motor Rated Speed:


The maximum speed allowed for the motor.

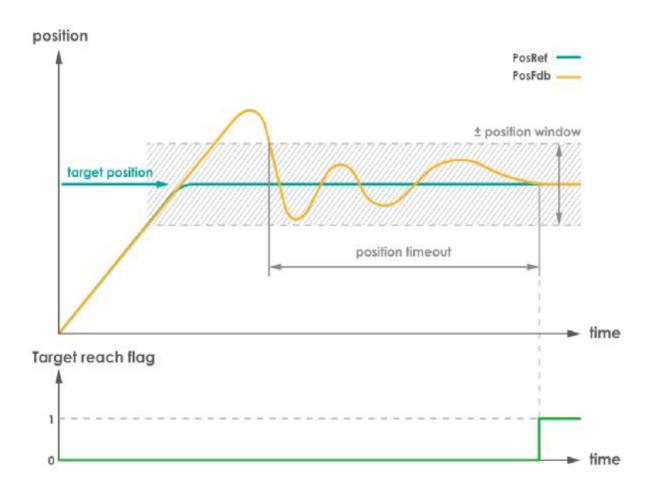
d. Quick Stop Deceleration:

Deceleration of the motor braking upon receiving the quick stop signal.

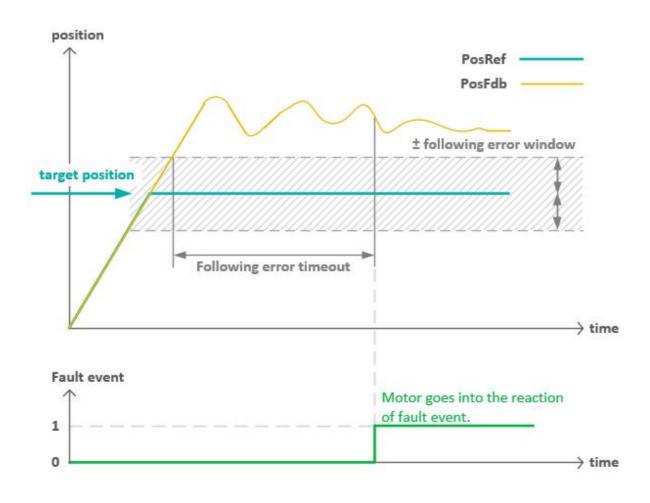
- e. Over-Velocity Protect:
 - The threshold of over velocity detection. If velocity exceeds overvelocity protect limit, the error code "E8481" will show up and the motor will be turned off.
 - If the value is set to 0, this detection function will be deactivated.



4.3.3 Position


Command Forward Limit	400.000	mm	Command Backward Limit	-250.000	mm
Over Pos. Fault Limit	500000.000	mm	Under Pos. Fault Limit	-500000.000	mm
Position Window	100	cnt	Position Window Timeout	5	ms
Following Error Window	5000	cnt	Following Error Window Timeout	0	ms

a. Command Forward / Backward Limit:

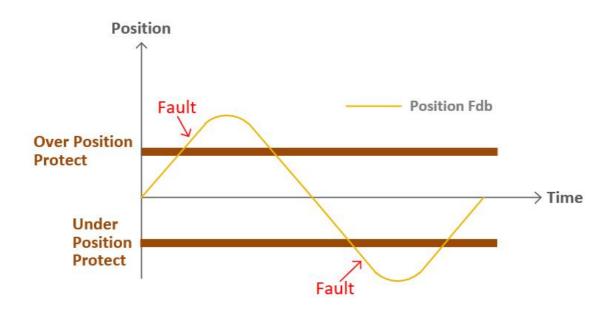

The maximum and minimum values of the position command that users can give.

- b. Position Window / Timeout:
 - The condition of "position target reach" flag and the corresponding time.
 - When the position feedback is within the position window and continues for a period (timeout), the target reach flag will rise.
 - When the time is set to 0, this detection function will be deactivated.

- c. Following Error Window / Timeout:
 - The condition of "following error" flag and the corresponding timeout.
 - The following error code is E8611.
 - When the position feedback is <u>out of</u> the following error window and continues for a period (following error timeout), a fault event will rise.
 The motor will react according to user's setting of fault reaction.

When the time is set to 0, this detection function will be deactivated.
 For safety concern a warning will show up.

Warning	
	0 is for disabling following error detection !
	ОК


When the time is set to more than 500 ms, a warning will show up.

Warning	
Time out value larger t	han 500 ms may decrease detection sensitivity.
	OK

Please check the chapter 5.5.4 Target reach flag

d. Over / Under Position Protect:

The threshold of position-fault status. When motor position is outside the over/under range, a fault event will occur.

4.3.4 Modulo

Position range Max.	mm
Position range Min.	mm

Modulo is the Position Range. It also refers to the term "607Bh", namely the "position range limit," in CiA[®] 402 Draft Standard Proposal (see chapter 4.2, point 1 - (5)).

a. Position range Max./Min.: Set user-defined Position Range here.

Note:

Some modes do not support user-defined parameters.

4.3.5 Motor Stuck

- Motor Stuck Threshold						
Current	50	% of Continuous Current				
Velocity	2.500	mm/s				
Period	0	ms (0 = disable)				

a. Current:

Sets the percentage of continuous current as the condition of "motor stuck". If the motor requires more than this percentage of current to work, the motor will be considered not moving (stuck). b. Velocity:

Velocity threshold. When velocity feedback is lower than this value, the motor will be considered not moving (i.e., motor stuck).

c. Period:

Set the time duration of Velocity threshold here. When velocity is lower than the Velocity threshold and continues for a period (Period), the motor will be considered not moving. When the time is set to 0, this function will be deactivated.

4.3.6 Power Stage

CDC Bus Limit		Frequency Level	
DC bus voltage	158.639	AC Input Freq	60
DC bus OVP Limit	375	Over-Freq Level	6553.5
DC bus UVP Limit	48	Under-Freq Level	0
Trip Voltage	360	5V Analog Input	0.437
Trip Voltage	360	5V Analog Input	0.437
Clear Voltage	350	Motor OTP Mode	Off ~
-External 5V Control ——		OTP Trip Level	0
		AVEL AND ADDRESS AND ADDRESS ADDRE	

DC Bus Limit

This is for monitoring whether DC power supply is normal.

a. DC bus voltage:

monitors the DC bus voltage at present.

b. DC bus OVP Limit:

DC bus Over Voltage Protection Limit. Must be less or equal to 375 V.

c. DC bus UVP Limit:

DC bus Under Voltage Protection Limit. Must be more than or equal to 48 V.

Once DC power exceeds OVP limit or is lower than UVP Limit, this will become a fault event (Error code: 0x3210; or 0x3220); motor reactions will be as described in chapter 4.4 - Disable Option.

Driver ON	Motor Status Fault	Error Code 0x3210 Reset	www.chieftek.com
0x3210	DCLinkOverVoltage	DC capacitor over 375 V Consid	er adding regenerate braking resistor
0x3220	DCLinkUnderVoltage	DC capacitor under 48V	Check high voltage supply

Voltage Limit

Settings of activating/deactivating the regenerative resistor.

d. Trip Voltage:

The trigger threshold of activating regenerative resistor. If voltage exceeds this value, regenerative resistor will be activated.

e. Clear Voltage:

Threshold of clearing the hysteresis effect. If voltage decreases to under this threshold, regenerative resistor will be deactivated.

External 5V Control

f. 5V Ready time:

The time duration from <u>starting supplying 5V power</u> to <u>when the</u> <u>equipment needing the 5V supply is ready for use</u>. (default value is 100 ms).

Frequency Level

This is for monitoring whether AC power supply is normal, and/or if AC power is connected.

g. AC Input Frequency:

Monitors the AC power.

h. Over-Freq Level:

Over-Frequency Level.

i. Under-Freq Level:

Under-Frequency Level.

Once AC power exceeds Over-Freq Level or is lower than Under-Freq Level, it will become a fault event (when lower, error code is 0x3142); motor reactions will be as described in the Disable Option chapter

Over Temperature Protection

The 5 V Analogue Input here is a general-purpose pin which is used to connect with the thermistor on the motor. GUI will show the monitored voltage on drive input.

As thermistors vary, users will need to calculate the resistance (ohm) according to the monitored voltage and then derive the corresponding temperature; see example formula ^{note*} and diagram below.

j. 5 V Analog Input:

Shows the voltage at the 5V Analogue Input pin.

k. Motor OTP Mode:

Motor Over Temperature Protection Mode.

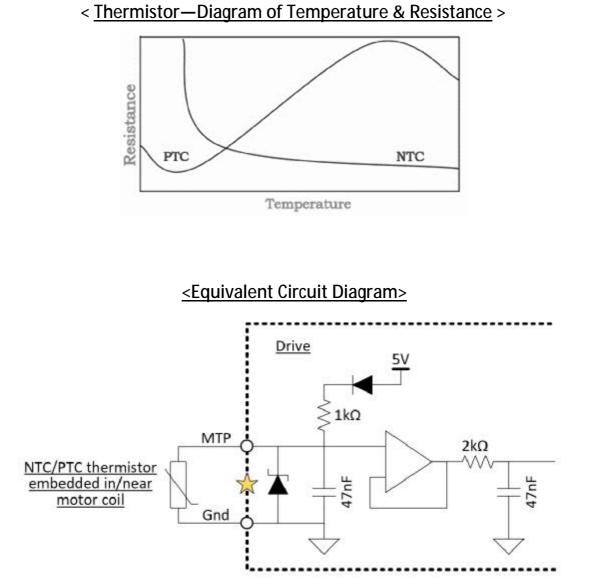
ı Off:

turn off protection mode.

GreaterThan:

This option is for PTC thermistors. When voltage on drive input is greater than the "OTP Trip Level" value (a fault event), protection will be triggered.

LessThan:


This option is for NTC thermistors. When voltage on drive input is less than the "OTP Clear Level" value (a fault event), protection will be triggered.

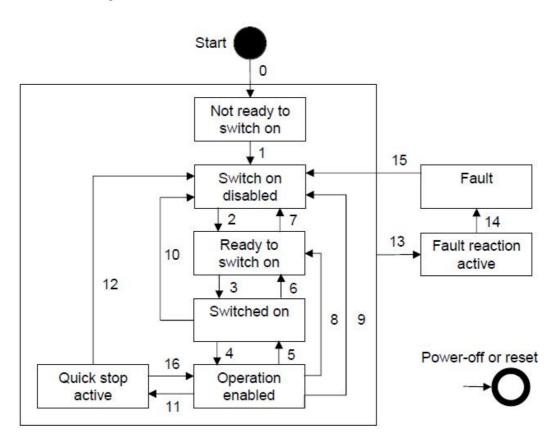
I. OTP Trip Level:

The voltage threshold value to trigger protection.

m. OTP Clear Level:

The voltage threshold value to deactivate protection.

Note*:

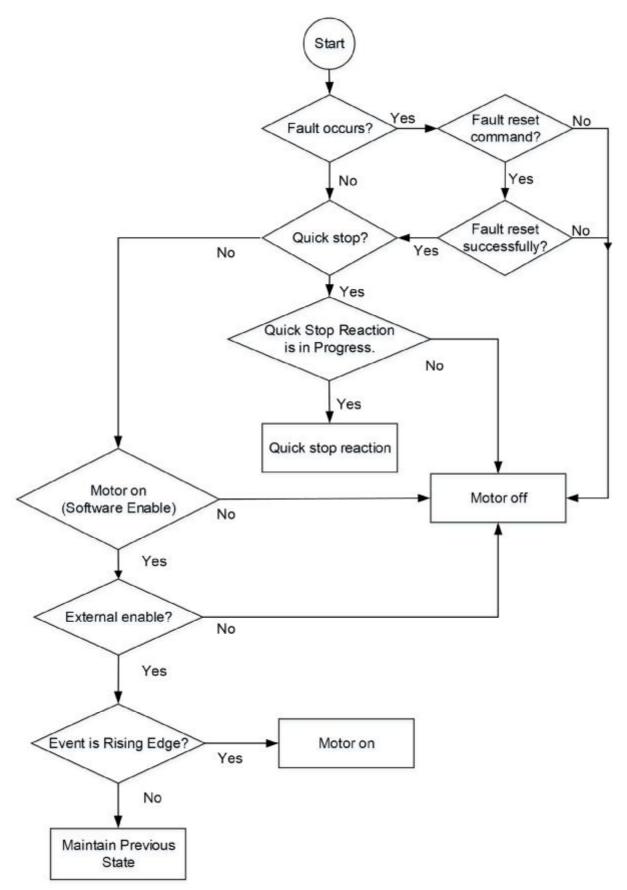

The formula to acquire the resistance (ohm) of place *: (The voltage of place * is known, monitored by the UI.)

$$V = \frac{5R}{R + 1000}$$
, $R = \frac{1000V}{5 - V}$

4.4 FSA & Disable Option

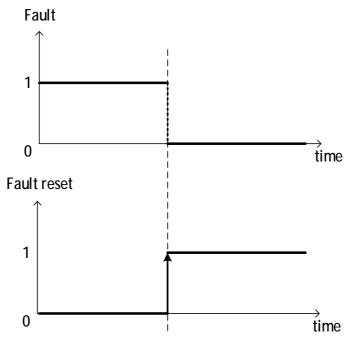
4.4.1 Finite State Automata

1. See the diagram below as described in CiA 402.

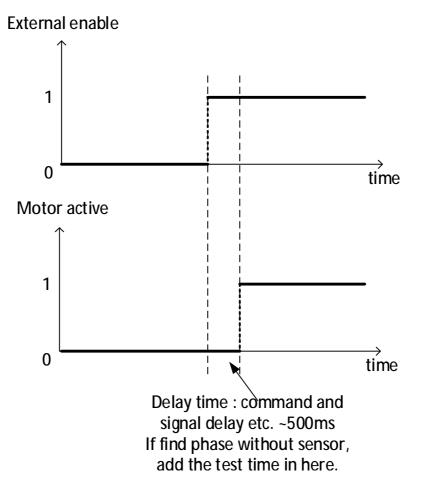


2. See the chart below from CiA 402 describing the triggering Event and Actions.

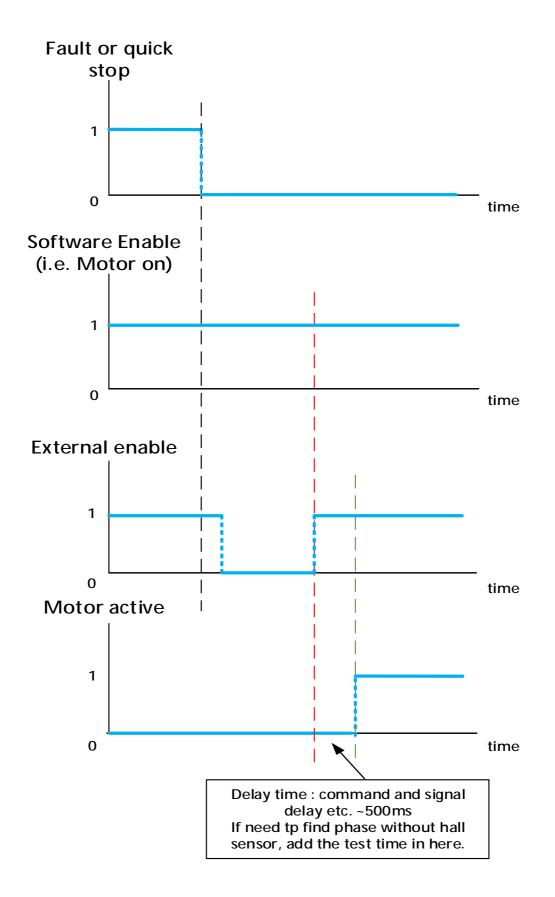
Transition	Event(s)	Action(s)
0	Automatic transition after power-on or reset application	Drive device self-test and/or self initialization shall be performed.
1	Automatic transition	Communication shall be activated.
2	Shutdown command from control device or local signal	None
3	Switch on command received from control device or local signal	The high-level power shall be switched on, if possible.
4	Enable operation command received from control device or local signal	The drive function shall be enabled and all internal set-points cleared.
5	Disable operation command received from control device or local signal	The drive function shall be disabled.
6	Shutdown command received from control device or local signal	The high-level power shall be switched off, if possible.
7	Quick stop or disable voltage command from control device or local signal	None
8	Shutdown command from control device or local signal	The drive function shall be disabled, and the high-level power shall be switched off, if possible.
9	Disable voltage command from control device or local signal	The drive function shall be disabled, and the high-level power shall be switched off, if possible.
10	Disable voltage or quick stop command from control device or local signal	The high-level power shall be switched off, if possible.
11	Quick stop command from control device or local signal	The quick stop function shall be started.
12	Automatic transition when the quick stop function is completed and quick stop option code is 1, 2, 3 or 4, or disable voltage command received from control device (depends on the quick stop option code)	The drive function shall be disabled, and the high-level power shall be switched off, if possible.


13	Fault signal (see also /CiA402-3/)	The configured fault reaction function shall be executed.
14	Automatic transition	The drive function shall be disabled; the high- level power shall be switched off, if possible.
15	Fault reset command from control device or local signal	A reset of the fault condition is carried out, if no fault exists currently on the drive device; after leaving the fault state, the fault reset bit in the controlword shall be cleared by the control device.
16	Enable operation command from control device, if the quick stop option code is 5, 6, 7, or 8	The drive function shall be enabled.

3. Diagram of cpc's Motor Activation Logic.



4. Fault event timing as follows:


<u>Note</u>: If Fault conditions are not cleared, reset cannot be activated.

5. Motor event timing, as follows:

6. If users want to turn on the motor again after fault or quick stop occurs, only rising edge of external enable can do, see the diagram below.

4.4.2 Disable Option

Users can assign what reaction to perform when the situations listed on Stop Option panel occur.

On Stop Option panel, the situations from "Filed Bus Abort" to "Fault" correspond to the CiA[®] 402 DSP.

Field Bus Abort	QuickStop	~	Holding brake velocity threshold	0	cnt/s
Quick Stop	DynamicBrake	~	Holding brake activation timeout	0	ms
Shutdown	ImmediatPowerOff	Ŷ	Territoren a		
Operation Disable	ImmediatPowerOff	\sim	C Dynamic Brake	12011	
Hait	BrakeSlow	Ŷ	Dynamic Brake Current Limit	25 %	of Peak Cur
Fault	ImmediatPowerOff	~	Disable Reaction	2500	cnt/s
Forward Limit	BrakeFast	~	End Velocity	-	
Backward Limit	BrakeFast	~	Use Dynamic Brak	e in motor o	off state

For further explanation about

- Situations, see chapter 4.4.2.1;
- Reactions, see chapter 4.4.2.2;
- Dynamic Brake, see chapter 4.4.2.3;
- Holding Brake, see 4.4.2.4

4.4.2.1 Situation Explanation

This chapter explains what causes situations "a" to "g" and shows the corresponding options of reaction.

a. Field Bus Abort:

This "Field Bus Abort" situation is due to that CANopen or EtherCAT stops broadcasting (usually because net cable is disconnected); therefore, the driver gives a command to itself to execute a reaction.

For example, if the reaction of Field Bus Abort is set to "FaultEvent", when Field Bus Abort occurs, the driver will trigger a fault event and execute the designated reaction of Fault situation (situation "f").

Stop Options			
Situation Reaction			
a.	Field Bus Abort	No action	
		FaultEvent	-
		DisableVoltage	
		QuickStop	

		Stop Options	
1	Situa	Reaction	
L>	f. Fault		DynamicBrake
			ImmediatePowerOff
			BrakeSlow
			BrakeFast
			BrakeCurrent
			BrakeVoltage

b. Quick Stop:

Quick Stop is triggered by <u>controlword</u> from control device, by <u>physical</u> <u>switch</u>, or <u>when field bus is aborted</u> (see Quick stop signal setting in Chapter 4.7 Input & Output).

	Stop Options		
Situation Rea		Reaction	
b.	Quick Stop	DynamicBrake	
		ImmediatePowerOff	
		BrakeSlow	
		BrakeFast	
		BrakeCurrent	
		BrakeVoltage	

c. Shutdown:

A situation of when AC power is shut down.

	Stop Options		
Situation Reaction			
C.	Shutdown	DynamicBrake	
		ImmediatePowerOff	
		BrakeSlow	

d. Operation Disable:

When "disable command" is received from control device or local signal.

	Stop Options		
Situation Reaction			
d.	Operation Disable	DynamicBrake	
		ImmediatePowerOff	
		BrakeSlow	

e. Halt:

Pause.

See Halt signal setting in Chapter 4.7 Input & Output.

	Stop Options		
Situation Reaction		Reaction	
e.	Halt	DynamicBrake	
		ImmediatePowerOff	
		BrakeSlow	
		BrakeFast	
		BrakeCurrent	
		BrakeVoltage	

f. Fault:

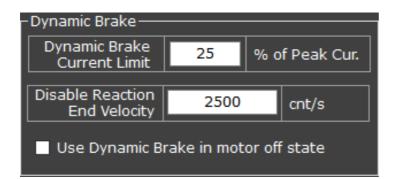
When Fault event is triggered.

	Stop Options		
Situation Reaction		Reaction	
f.	Fault	DynamicBrake	
		ImmediatePowerOff	
		BrakeSlow	
		BrakeFast	
		BrakeCurrent	
		BrakeVoltage	

g. Forward & Backward Limit:

When Forward/Backward limit switch is triggered.

See Forward & Backward limit signal setting in <u>Chapter 4.7 Input &</u> <u>Output.</u>


Stop Options		
	Situation	Reaction
g.	Forward & Backward Limit	DynamicBrake
		ImmediatePowerOff
		BrakeSlow
		BrakeFast

4.4.2.2 Reaction Explanation

Name of the Reactions to Field Bus Abort	Explanation
No action	Event will be ignored.
FaultEvent	To trigger fault event.
DisableVoltage	Transit to "Switch on disabled" state.
Quick Stop	To trigger quick stop

Name of Reaction	Explanation
QuickStop	Transit to "Quick stop active" state.
DynamicBrake	Brake motor by means of a controlled motor short-circuit.
ImmediatePowerOff	Electrically disconnected from drriver.
	Depends on presently used mode: If in
	Velocity Mode: Bring velocity command to zero using Profile
BrakeSlow	deceleration.
	Current(Torque) Mode: Bring current command to zero
	using Profile current slope.
	Depends on presently used mode: If in
	Velocity Mode: Bring velocity command to zero using Quick
BrakeFast	Stop deceleration.
	Current(Torque) Mode: Bring current command to zero by
	powering off (that is to say: ImmediatePowerOff).
BrakeCurrent	Control stop to zero current using Torque mode's current
	slope.
BrakeVoltage	equals to ImmediatePowerOff.

4.4.2.3 Dynamic Brake

Brake motor by means of a controlled motor short circuit. This function can be applied both during motor-on and motor-off states, and can be used to:

- 1. Decrease the degree of unexpected motor reactions if the encoder is not functioning correctly.
- 2. Stop motor immediately.
- 3. Prevent motor from gliding freely even in motor-off state.
- a. Dynamic Brake Current Limit % of Peak Cur.

Use how much percentage of peak current to brake the motor. This value will influence those stop options which are set to "Dynamic Brake".

b. Disable Reaction End Velocity

When a disable reaction (in this case, the Dynamic Brake reaction) is in process, once motor speed drops below this value, end the disable reaction and transit motor state to next state.

c. Use Dynamic Brake in motor-off state

Tick this box if users wish to apply dynamic brake in motor off state also.

4.4.2.4 Holding Brake

Holding Break			
Holding brake velocity threshold	1	cnt/s	
Holding brake activation timeout	0	ms	

This function is used in motor off state.

To apply this function, a physical brake needs to be installed on the motor system. Besides, users need to set a digital output pin as "Brake".

a. Holding Brake Velocity Threshold:

In motor off state, brake the motor when velocity is below this value cnt/s.

b. Holding Brake Activation Timeout:

In motor off state, brake the motor while motor has kept moving after a certain period (Timeout).

4.5 Feedback

In addition to as described (such as setting the encoder type, source of hall sensor, and the unit of encoder) in the Wizard chapter, please see detailed configuration on the subsequent pages.

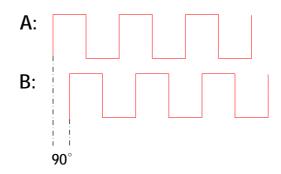
Select first the type of your encoder ("Feedback Selection" on the panel). There are 4 types supported—Incremental Encoder A/B, Sine/Cosine Incremental, BiSS-C, and Tamagawa.

The Feedback panel's buttons are shared in all encoder types:

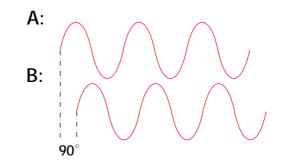
Feedback Selection	Incremental $ \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $		Multiplier	60000
Hall Source	Feedback Pc 🗸		Divider	1
Motor Encoder Resolution	2000000	cnts/m	Encoder Position	1
Motor Pole Pitch	30	mm	Index Position	0

a. Feedback Selection:

At present various signal types of encoder can be supported by Will1 Drivers:


Will1 Drivers:

supports Incremental A/B.


Will1-B Drivers:

supports incremental A/B, Sin/Cos, BiSS-C, and Tamagawa signals.

ø Incremental Encoder A/B:

ø Sine/Cosine Encoder:

- b. Hall Source
 - Feedback Port:

Assign the digital input pins at Feedback port as hall sensor signal source.

Controller Port:

Assign the digital input pins at Controller port as hall sensor signal source.

- c. Motor Encoder Resolution:
 - Set the resolution of the encoder sensor (in cnts/m or cnts/rev). <u>Note</u>:

The resolution of sine/cosine encoder = Interpolation Factor x Fundamental Cycle Count. See chapter 4.5.2.

- d. Motor Pole Pitch:
 - Rotary:

Define how many sets of poles are in one revolution.

(For firmware version starting 0.7.21): If unknown, enter value 65535, then go to Tune> Phase> Auto Phase and click "Start AutoPhase" button, the UI will test for you automatically.

Linear:

Set the length of one set of pole of the motor (in millimeter).

e. Multiplier / Divider:

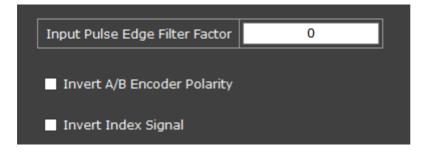
This ratio value is for firmware's use.

However, it also gives users an idea of how many counts per pole pair.

f. Encoder/Index Position:

Encoder Position	1
Index Position	0

The <u>raw</u> position value of the encoder and index.


Note:

The position values shown on this panel might differ from the position feedback value shown on Trial Run panel.

The position feedback value on Trial Run panel has been processed by modulo (see chapter 4.3.4) and homing (see chapter 7).

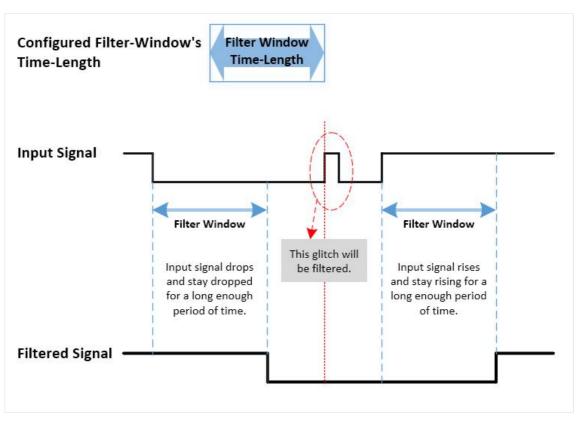
4.5.1 Incremental Encoder A/B

- a. Input Pulse Edge Filter Factor:
 - A length-of-time <u>factor</u> (to be multiplied by the rest part of the formula mentioned below) to produce the total length of time of a filter window which is used as the threshold to filter off the glitch in input signal. This value can be 0 to 255. "Input signal" means, for example, the signals sent from the motor encoder to the driver (value 0 = function disabled). The cpc driver provides such <u>pulse-width filter</u> function on such signal.
 - Formula—Total length of time of Filter Window:

 $T_{FW} = Factor \times 10 \times \frac{1}{Fc (note*)}$ (ns)

Encoder's maximum detectable frequency:

$$F_{S} = \frac{Y \text{ (note*)}}{Factor x 10 x 4} \text{ (Hz)}$$


Note*:

Drive	value of "Fc"
Will1 Series	150,000,000
Will1-B	160,000,000
Series	

- When receiving a signal, the driver determines whether it is a glitch based on the user-configured total length of time of the Filter-Window.
 - Ø If the input signal's duration is shorter than Filter Window,

the signal is regarded as a glitch and will be ignored.

Ø If the input signal's duration is longer than or equals to the Filter Window, it is regarded as a true signal transition and will be displayed.

<Mechanism of Filter-Window>

- b. Invert A/B Encoder Polarity
 - Reverses the direction of encoder counting.

To elaborate, if originally the motor's position feedback value increases while moving in positive direction, after ticking (or unticking) this option, the value will decrease instead.

This function could be applied when AutoPhase is unusable—one of the possible causes is that the motor stroke cannot contain a complete motor pole pitch; to solve this issue, see manual-phasesetting solution in chapter 5.2.4.

Note:

Inverting encoder polarity will cancel the presently-established

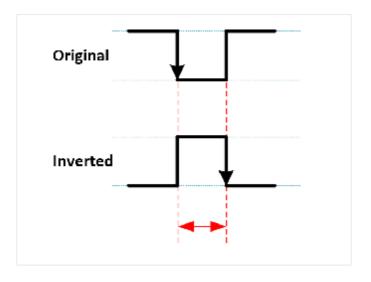
Phase and Home. See SAFETY WARNING on next page.

I SAFETY WARNING:

To avoid unexpected movement of the motor, after changing the encoder polarity setting, it is NECESSARY to ALSO alter the "Invert Commutation Polarity" setting in the Phase section.

Next, if a hall sensor or an absolute encoder is used, it is ESSENTIAL to manually key in these data respectively:

- Ø Hall sensor: The Theta Table. (If no hall sensor is used, after changing BOTH polarity settings, perform Force Zero again.)
- Ø Absolute encoder: the value of "Absolute Encoder Single Turn Zero Offset".

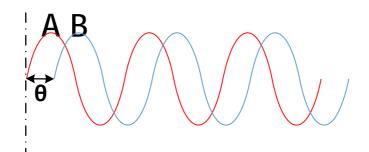

Please see detailed steps of manual-phase-setting in chapter 5.2.4.

A warning will show up when trying to change the polarity.

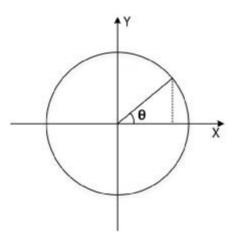
SAFETY WARNING
In order to avoid unexpected movement of motor, it is NECESSARY to ALSO alter the setting of "Invert Commutation Polarity" in the Phase section.
NEXT, if a hall sensor or an absolute encoder is used, it is ESSENTIAL to manually key in these data respectively:
 Hall sensor: the Theta Table. (If no hall sensor is used, after changing both polarity settings, perform Force Zero again.) Absolute encoder: the value of "Absolute Encoder Single Turn Zero Offset".
Please see detailed manual-phase-setting steps in the Phase chapter in GUI User Guide.
ОК

c. Invert Index Signal

Inverts the polarity of index input signal.



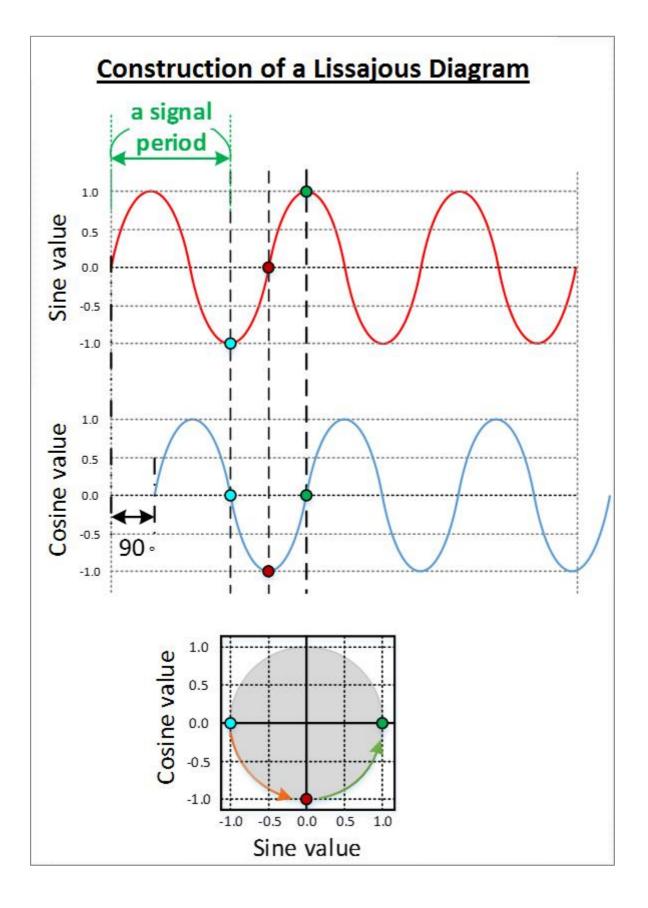
<Inverted index signal>


4.5.2 Sine/Cosine Encoder

Principle:

The sine/cosine encoder sends out two analog signals which are in sine wave forms and are 90 degrees out of phase.

The sine and cosine signals can be drawn into a circle based on X (sine) and Y (cosine) co-ordinates and can therefore perform arctangent function (or, interpolation) to know the degree of theta in order to obtain finer position resolution.



The cpc driver will digitalize sine and cosine signals into values ranging from 0 to 4095.

A sine/cosine circle can be viewed in Lissajous diagram (i.e., plotXY diagram) in the Scope window. Furthermore, there are 3 kinds of possible distortion in signals: Amplitude, Sine/Cosine Offset, and Phase. These will be elaborated on subsequent pages.

<u><Lissajous Diagram></u>

There are two function tabs under the sine/cosine encoder section:

Parameter tab

Option Register	0x0	Sin ADC	0
Interpolation Factor	200	Cos ADC	1
Fundamental Cycle Count	50000	Signal A	-2047
Hysteresis 0		Signal B	-2048
	Theta	0.7856421	
✓ Invert A/B Encoder Pol	Phase Offset	2	
Invert Index Signal			

Calibration tab

	_			
0				
2048				
2048				
1				
0				
,,,				
Record Calculate				
	2048 2048 1 0	2048 2048 1 0	2048 2048 1 0	2048 2048 1 0

Note:

The value of "Motor Encoder Resolution" of the sine/cosine encoder is the result multiplying parameters "Interpolation Factor" and "Fundamental Cycle Count".

Settings	Feedback Selection Sine/Cosi	ne Encod 🗸 🕖	Multipl	ier 300000
Driver	Hall Source None	~	Divider	- 1
Motor Type	Motor Encoder Resolution 100	00000 cnts/	m Encode Positio	
Motor Protection L Disable Options	Motor Pole Pitch	30 mm	Index Positio	n -2737180
Feedback				Event Limit
Auxiliary Command	Parameter calibration			
Input	\sim			
Output	Option Register	0x0	Sin ADC	4095
Boot Sequence	Interpolation Factor	200	Cos ADC	4095
Error Mapping	Fundamental Cycle Count	50000	Signal A	2047
Fieldbus	Hysteresis	0	Signal B	2047
Position Comparator	✓ Invert A/B Encoder Polar	ity	Theta Phase Offset	3.926991
G' Tune	Invert Index Signal		- Hase Offset	

4.5.2.1 Parameter Tab

Option Register	0x0	Sin ADC	0	
Interpolation Factor	200	Cos ADC	1	
Fundamental Cycle Count	50000	Signal A	-2047	
Hysteresis 0		Signal B	-2048	
L I	Theta	0.7856421		
Invert A/B Encoder Pol	Phase Offset	2		
Invert Index Signal				

a. Option Register:

ı 0x0:

no use.

ı 0x1:

Averages the sine and cosine signals happened in one control loop cycle time. This function is for filtering off noises; the values of signal A, signal B and Theta are hence changed.

Note:

This function is <u>not</u> suitable for high resolution encoder. The sine/cosine wave frequency needs to be no greater than 1/4 of the control loop frequency.

b. Interpolation Factor:

Indicates how many counts per signal period.

- c. Fundamental Cycle Count:
 - Rotary motor: how many signal periods per cycle.
 - Linear motor: how many signal periods per meter.

d. Invert A/B Encoder Polarity:

Same as described in chapter 4.5.1, point (b).

e. Invert Index Signal

Same as described in chapter 4.5.1, point (b).

Sin ADC	0
Cos ADC	1
Signal A	-2047
Signal B	-2048
Theta	0.7856421
Phase Offset	2

f. Sin ADC:

The real time digitalized value of sine signal. Value range: 0 to 4095.

g. Cos ADC:

The real time digitalized value of cosine signal. Value range: 0 to 4095.

h. Signal A:

The outcome value of Sin ADC minus Sin Offset Compensation.

i. Signal B:

The outcome value of Cos ADC minus Cos Offset Compensation.

j. Theta:

The electrical theta within signal period (Unit: radian).

4.5.2.2 Calibration Tab

				1	
Point Count	0				
Cos Offset Compensation	2048]			
Sin Offset Compensation	2048]			
Gain Compensation	1				
Phase Compensation	0				
Record Ca	Record Calculate				

Point Count:

Shows how many dots are automatically recorded.

Cos Offset Compensation:

For calibration to make sure the outcome of computed value is right. When the circle (drawn based on the sin and the cos signals) is deviated from the center of lissajou diagram (shown in the Scope window), input this value to <u>deduct</u> from the cosine signal axis to relocate.

Sin Offset Compensation:

For calibration to make sure the outcome of computed value is right. When the circle (drawn based on the sin and the cos signals) is deviated from the center of lissajou diagram (shown in the Scope window), input this value to <u>deduct</u> from the sine signal axis to relocate the circle.

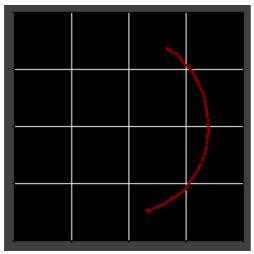
Gain Compensation:

For calibration. When the <u>amplitude of the sine and the cosine signal is</u> <u>not equal (i.e., distorted), the ratio of them will not be 1</u>. Input a constant in this column to be multiplied by the present ratio so as to adjust the amplitudes to be equal. e. Phase Compensation:

When the shape of the circle (drawn based on the sin and the cos signals) is oval-shaped (i.e., distorted) due to that the sine and cosine phase is not 90 degrees. Input a value ranged from 0 to 2 π (unit is radian).

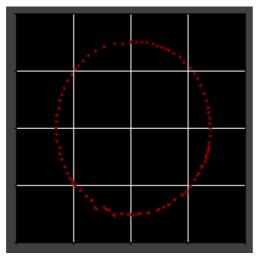
f. Record:

click to start recording

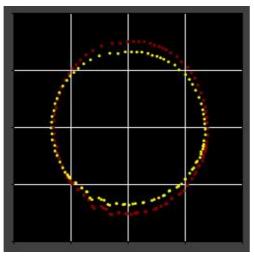

g. Calculate:

Click to automatically calibrate the sine/cosine encoder signals. Click this button, then manually rotate (or move) the motor to generate signal input.

4.5.2.3 Calibration Steps

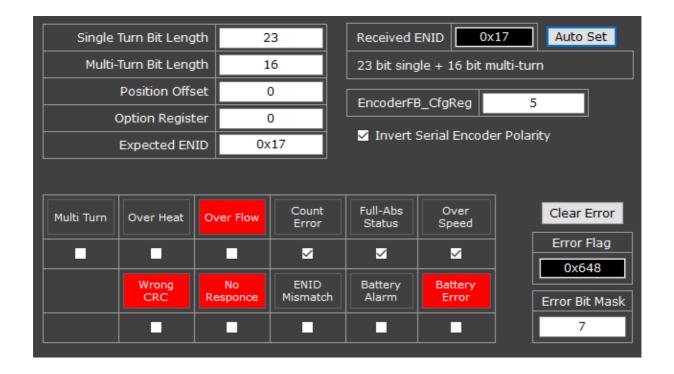

Before calibrating, make sure the encoder is connected properly.

- 1. Click Record button.
- 2. Manually rotate the motor, you will see red dots appearing on the panel.



3. Keep rotating until there are more than 100 dots and until the dots can form a circle.

The more dots recorded, the more accurate the calibration will be. To obtain more dots, rotate for more rounds.



4. Click Calculate, a yellow circle will show up representing the automatic calibration result.

Calibration is now completed.

4.5.3 Tamagawa Encoder

Before configuring, make sure the motor type (see chapter 4.2) is set to "Rotary type".

a. Auto Set:

Automatically retrieves and shows the ENID* of the Tamagawa encoder.

*: The term "ENID" refers to "encoder ID". This ID is named by TAMAGAWA SEIKI Co., Ltd. Each Tamagawa encoder model has its own unique ID.

b. Received ENID:

(read-only) Shows the ENID of the encoder which is now connected with your driver.

c. Single Turn Bit Length:

Configures how many bits—based on 2^{Nth}—can be recorded per motor turn [resolution].

 Multi-Turn Bit Length: Configures how many motor turns [resolutions]—based on 2^{Nth}—can be recorded.

e. Expected ENID:

Users can assign an "Encoder ID (ENID)" to write to the driver.

cpc provides 4 sets of default ENID: 0x0, 0x06, 0x11, and 0x17. Each of the default ENIDs carries default values of "single turn bit length" and "multi-turn bit length".

- Entering a default ENID will automatically change the values of the "single turn bit length" and the "multi-turn bit length".
- Entering a non-default ENID will not change above-mentioned settings of bit lengths. Users will need to configure "single turn bit length" and "multi-turn bit length" on their own.

Note:

- 1. The ID in this column is the ID written to the driver.
- If the ID of the Tamagawa encoder that you are going to operate with is not of cpc's default, please key in the ENID of this encoder so that cpc driver is able to detect if the "Expected ENID" and "Received ENID" are consistent.
- f. Position Offset: Reserved.
- g. Option Register: Reserved.

h. Status Flag:

Also called <u>status bit</u>.

Each status flag/bit reflects the status of an encoder error. A rising flag/bit (represented in red background) is seen as an encoder error.

Multi Turn	Over Heat	Over Flow	Count Error	Full-Abs Status	Over Speed
				•	
	Wrong CRC	No Responce	ENID Mismatch	Battery Alarm	Battery Error

- The first 8 status bits (*Over Speed* ~ *Battery Alarm*) are from Tamagawa.
- The last 3 bits are cpc-specific. See meanings of signal high (shown in red) below:
- I ENID Mismatch:

Means that the values in user-defined "ENID" column

column Received ENID 0x17 and in the read-only "Received ENID" don't match.

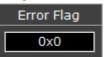
No Response:

Driver receives no response from encoder.

Wrong CRC:

The format of the message sent from encoder to driver is wrong. This might be caused by noise.

i. Clear Error:


Clear Error

Resets status flags [bits] to logic 0 level.

Note:

To reset successfully, the cause(s) of encoder error needs to be removed in advance.


j. Error Flag:

For internal use only.

It's the sum of all the status flags [bits] in hexadecimal.

k. Error Bit Mask:

For internal use only. It's the sum (in decimal) of the ticked bits.

I. EncoderFB_CfgReg:

For internal use only.

m. Invert Serial Encoder Polarity

Invert Serial Encoder Polarity

Same as described in chapter 4.5.1, point (b).

4.5.4 Event Limit

The Event Limit panel is shared by all encoder types. The hidden Event Limit panel will show up by clicking **Event Limit** button.

Feedback Selection	Incremental Encod ~	<u> </u>	Multiplier	300000
Hall Source	None v		Divider	1
Motor Encoder Resolution	1000000	cnts/m	Encoder Position	1
Motor Pole Pitch	30	mm	Index	-13
		άν.	Ever	nt Limit
Input Pulse Edge Filte	r Factor 0			

Error Type	Limit 2	Count
Quadrature Phase	0	0
Incremental Encoder Amplitude	0	0
Serial Encoder Bus or Status	0	0

Each encoder type has its own definition of encoder error.

When the <u>encoder error count(1)</u> value—which derives from the formula of Encoder Error Calculation*—has accumulated and surpassed the <u>user-defined</u> <u>limit(2)</u>, a fault event will be triggered.

* Calculation Formula of Encoder Error Count:

- If an encoder error appears in one control loop's time, add value 16 to the <u>encoder error count</u>.
- Ø If no encoder error appears, deduct value 1.

a. Count:

Shows the result of the encoder error calculation.

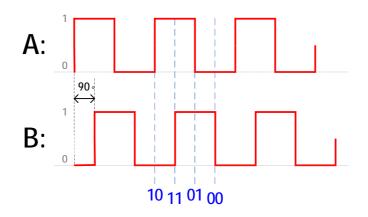
Note:

For Tamagawa encoder, only selected status flag (shown as ticked will be counted; namely, be included into error calculation.

b. Limit:

Sets the maximum limit (0 to 65535) of triggering a fault event. When the value of encoder error calculation has exceeded this user-defined limit, a fault event will occur.

c. Error Type:


See each encoder type's definition of encoder error as follows:

Error Type	Limit	Count
Quadrature Phase	0	0
Incremental Encoder Amplitude	0	0
Serial Encoder Bus or Status	0	0

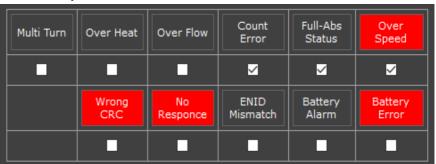
(1) Quadrature Phase

To set the fault-triggering limit of Incremental A/B encoder.

A normal incremental A/B quadrature signal received by the driver should be in line with the 10-11-01-00 sequence (see graph below). If not so, it will be regarded as an encoder error.

(2) Incremental Encoder Amplitude

To set the fault-triggering limit of sine/cosine encoder:


If the amplitude of sine or cosine is too low—according to the formula when $[(signal A)^2 + (signal B)^2] < 65536$ —this will be regarded as an encoder error.

Option Register	0x0	Sin ADC	4095
Interpolation Factor	200	Cos ADC	4095
Fundamental Cycle Count	50000	Signal A	2047
Hysteresis	0	Signal B	2047
		Theta	3.926991
Invert A/B Encoder Polarity		Phase Offset	0

(3) Serial Encoder Bus or Status

To set the fault-triggering limit of <u>Tamagawa encoder</u>. Any rising status flag (shown in red background) is viewed as an encoder error; however, only the user-selected flag(s) (shown as ticked) will be included into the encoder error calculation to trigger fault event.

For example:

4 status flags have risen (represented in red) indicating the occurrence of encoder errors; yet, only the <u>selected</u> (shown as ticked) status flag "Over Speed" will be counted to trigger fault event.

4.6 Auxiliary Command

Use this tool to set up how to give and take the commands from controller. You can choose the signal type and gear ratio and can set the filter frequency.

Select "Enable" to allow Auxiliary Input, the driver then can execute commands from the controller.

Communication	🕐 📄 🎢 Motor On flag 🥮 Phase Est. 🥯 Error Mapping 🥮 Aux. Cmd. 🥮
Settings Driver	Motor Save Load Ext. Enable 🦂 Home Est. 🛁 DC Bus Ready 🛁 Language English 🗸
Motor Type Motor Protection Disable Options Feedback	Auxiliary Input Disable
Auxiliary Command	
Input Output Boot Sequence Error Mapping Position Comparator II O Tune Trial Run	Ratio
Homing	Auxiliary Encoder Reset Mode Fieldbus or Digital In 😔 EncAux Pos. 0 Set
W Scope	Encoder Output Source Emulated Feedback
🗊 Script	Input Pulse Edge Filter Factor 0 Vel. Zero criteria
A Error Log	Multiplier 1 Divisor 1 Threshold(cnt/s) 0
	Period(ms) 0

There are 4 modes of auxiliary input:

- The first one (Enc. to Position, see chapter 4.6.1) uses pulse signal and corresponds to position mode;
- The rest three (Analog to Position & Velocity & Current mode, see chapter 4.6.2) use analog signal.

This panel below is shared in all modes:

Auxiliary Encoder Reset Mode	Operation Enable	~	EncAux Pos.	0	Set
Encoder Output Source	Emulated Feedback	~	Multiplier <mark>1</mark>	Divis	or 1

a. Auxiliary Encoder Reset Mode:

This function allows users to choose by which method to set the "received-and-processed position command value" *note to zero. This function is especially used when checking whether the commands sent from controller side are correctly received by the driver.

*<u>Note</u>:

The "received-and-processed position command value" is shown in this column:

There are 3 ways given by this function to set the received-andprocessed position command value to zero:

Operation Enable (default):

Set it to 0 when motor-on state is triggered.

Homing Attained:

Set it to 0 when homing is successfully completed.

Fieldbus or Digital In:

Set it to 0 via CANbus or RS232, or digital I/O.

b. EncAux Pos.:

The EncAux Pos. value can only be configured in motor-off state. Changing the value in the EncAux Pos. column will overwrite the value of the "received-and-processed position command" *^{note}. After configuring, click "Set" button to overwrite.

*<u>Note</u>:

The "received-and-processed position command value" is shown in

this column:

Users can set the "received-and-converted position command" to the value they need by configuring the EncAux Pos. value. Value 0 is the mostly applied value.

Application example:

When setting up controllers with drivers, configure the EncAux Pos. value to be the same as the original command value sent from controller, so that you can check conveniently whether these two sides' signals are in line with each other.

c. Encoder Output Source:

Selects from which source to output to the controller. The word "encoder" in this title refers to <u>the encoder feedback</u> that the controller received.

Motor Feedback:

Copies the motor's feedback signal to the controller.

Auxiliary Encoder Reference:

Copies the controller's command to two or more drivers. Select this option if you wish to send controller's signals to two or more drivers to execute the same action.

Emulated Feedback:

			I I			
Encoder Output Source	Emulated Feedback	\sim	Multiplier	1	Divisor	1

Sends the "emulated" position feedback values to the controller.

Select this option when using Error mapping function, or for emulating the motor encoder's signals; for the latter, you can set gear ratio by adjusting the multiplier and divisor.

Note:

Emulated Feedback function does <u>not</u> apply to the first version of Will1 Driver.

4.6.1 Encoder to Position mode

Auxiliary Input		Source	Signal Type
Disable		oder2	Incremental A/B 🕓
Ratio		Velocity Cor 0	mmand Cnt/s
	Filter	Position Cor	mmand
	0 Hz	O	Cnt

a. Signal Type:

Define the signal type from the controller.

- Incremental A/B
- Pulse & Direction
- I CW/CCW
- b. Ratio: cnt/pulse:

Define the ratio between the controller command and the motor movement.

c. Filter:

Low-pass filter.

Remove commands whose frequency is higher than this filter value.

Note: The final Position & Velocity command values are read-only and cannot be modified.

d. Input Pulse Edge Filter Factor:

Auxiliary Input Disable - End	Mode c. to Position V	Source Signal Type Incremental A/B v
Ratio	Filter 0 Hz	Velocity Command 0 Cnt/s Position Command 0 Cnt
Auxiliary Encoder Reset Mode	Operation Enable 🛛 🗸	EncAux Pos. 0 Set
Encoder Output Source	Motor Feedback 🛛 🗸 🗸	
Input Pulse Edge Filter Factor	0	Vel. Zero criteria
Ha		Threshold(cnt/s) 0
		Period(ms) 0

<u>Note</u>: This function is for the "Encoder to Position" mode only.

- A length-of-time factor (to be multiplied by the rest part of the formula mentioned below) to produce the total length of time of the Filter Window which is used as a threshold to filter off the glitch in input signals. <u>This value can be 0 to 255</u>. "Input signal" means, for example, the signals sent from the controller or external encoder to the driver (value 0 = function disabled). The cpc driver provides such pulse-width filter function on such signal.
- Formula: Length of time of the Filter Window:

 $T_{FW} = Factor x 4 x - \frac{1}{Fc^*}$ (ns) See note*.

(See next page)

- Encoder's maximum detectable frequency:
 - (1) If the selected Signal Type is "Incremental A/B":

$$F_{S} = \frac{Fc^{*}}{Factor x 4 x 4}$$
 (Hz)

I.

See note* below.

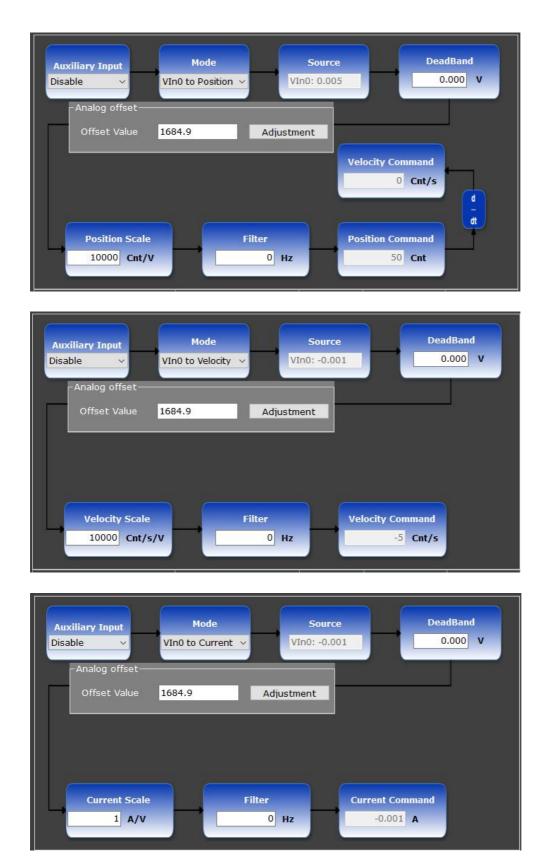
(2) If the selected Signal Type is "CW/CCW" or "Pulse/Dir":

$$F_{S} = \frac{Fc*}{Factor x 4 x 2} (Hz)$$

See note* below.

<u>Note</u>^{*}: the corresponding value of F_c is

Driver	Value of "Fc"
Will1 Series	150,000,000
Will1-B	160,000,000
Series	


e. Vel. Zero Criteria / Threshold (cnt/s) / Period (ms):

Auxiliary Input Disable v En	Mode to Position 👻	Soc	rice r2	Signa	al Type ntal A/B 🗠
Rotio	Filter	Hz		Command Cnt/s Command Cont	
Auxiliary Encoder Reset Mode	Operation Enable	V Enci	iux Pos.	0	Set
Encoder Output Source	Motor Feedback	~			
Input Pulse Edge Filter Factor	0	Vel	Zero criteria		
		The	eshold(cnt/s)	0	
		Per	iod(ms)	0	

<u>Note</u>: This function is for the "Encoder to Position" mode only.

It is used to determine whether the pulses of auxiliary command have stopped – The pulse command which is lower or equal to this velocity (cnt/s) for a duration longer than or equal to this configured period (ms) will be regarded as <u>zero</u> (i.e., the auxiliary command has stopped giving orders).

4.6.2 Analog to Position & Velocity & Current mode

a. Dead Band:

To remove the noise.

The signal voltage lower than this value will be deemed to zero. The band will be the +/- range of the keyed-in value. For example, if the value is set at 1 V, the dead band will be +/-1 V.

b. Analog offset:

Digital offset value.

The controller sends out its analog signals (ranging from -10 V to 10 V) which will be converted into Analog-to-Digital-Converter (ADC) values (ranging from 0 to 4095). These analog signals need to be calibrated. To do so, the middle of the analog voltage signal (0 V) needs to align to the middle of the ADC value (2048) at driver. Click the "Adjustment" button to automatically calibrate the analog offset, or key in values to adjust manually.

c. Position / Velocity / Current Scale:

The gear ratio.

Converts the analog voltage command into position, or velocity, or current command.

d. Filter:

Low-pass filter. Removes commands whose frequency is greater than this value.

Note: The final Position & Velocity & Current command values are read-only, cannot be modified.

4.7 Input & Output

The Input setting defines the trigger function that should occur when driver receives "true" logic from input signals. The Output setting defines what signals to be output while some events occur.

For pin-definition of input and output please refer to the cpc Will1/Will1-B Installation Guide.

The digital I/Os interfaces enable users to configure functionality as well as polarity of the digital I/Os and to monitor the state of all digital I/Os. In cpc GUI, the green light
represents logic "true", and the red light
represents logic "false".

<u>Note</u>:

Only the "External Enable" function requires ALL the pins (which are assigned to be Ext. Enable) to be logic true to make this signal high. For the rest of I/O functions, it takes only ONE pin to be logic true to make signal high.

4.7.1 Input

Meaning: The signals that are sent to the driver.

Input:

Communication	Motor	Load	Motor On flag 🧲 Ext. Enable 🍚
Driver	< Pin No.	Inverse	Status
Motor Type	Din-A0 Din-A1		None ×
Motor Protection	Din-A2		None ~
Disable Options	Din-B0		None ~
	Din-B1		None 🗸
Feedback	Din-B2		None 🗸
Auxiliary Command	Din-B3		None ~
Input	Din-B4		None 🗸
	Din-B5		None 🗸
Output	Din-C0		None 🗸
Boot Sequence	Din-C1		None ~
Error Mapping	Din-C2		None 🗸 🗸

Input panel explanation

INPUT	
State	A graphic element that toggles between green and red to
	reflect the on/off state of the actual input. 📮 📕
Pin No.	Specifies a pin.
Function	Defines the functionality of the digital input. None Backward Limit Switch Forward Limit Switch Home Switch QuickStop (Active LOW) Halt External Enable External Alarm Fault Reset Encoder Feedback Reset Encoder Feedback Reset Encoder Auxiliary Reset Gain switch to 2nd set Gain switch to 3rd set Motor Mode select bit1 Homing operation start Force Home Position

INPUT	
Inverse	Click to invert the polarity of a digital input.
	As the result of inversion, the graphic element in the
	software immediately changes color.

4.7.1.1 Input Functions

Input Functions	Description
Backward Limit Switch	Defines this pin as signal state of Backward Limit Switch
Forward Limit Switch	Defines this pin as signal state of Forward Limit Switch
Home Switch	Defines this pin as signal state of Home Switch
QuickStop (Active	Defines this pin as signal state of QuickStop
LOW)	(QuickStop will be active when signal is Low).
Halt	Defines this pin as signal state of Halt.
Πάιι	(Motor motion will be paused when signal is high)
	Defines this pin as signal state of External Enable.
	<u>Note</u> :
External Enable	if multiple pins are set to External Enable,
	ALL of these pins need to be High to activate
	External Enable event.
	Defines this pin as signal state of External Alarm.
External Alarm	(If the drive receives external alarm, Fault event
	(error code: 90F0) will be triggered).
Fault Reset	Defines this pin as signal state of Fault Reset.
	Defines this pin as signal state of Encoder
Encoder Feedback	Feedback Reset.
Reset	(When signal is high, it will set the motor's present
	position as 0.)
	Defines this pin as signal state of Encoder
Encodor Auviliany Docot	Auxiliary Reset.
Encoder Auxiliary Reset	(When signal is high it will set the auxiliary
	command value as 0.)
Gain switch to 2nd set	Switch to the 2nd set of gain.
Gain switch to 3rd set	Switch to the 3rd set of gain.

Input Functions	Description
	This function is for Boot Sequence (See Ch. 4.8).
	In boot sequence's "Motor-ON" setting, users can
	configure up to 4 sets of motor-on modes,
	numbered #0 to #3.
	To enable altering the motor-on modes, users
	need to equip at least 3 physical I/O switches;
	they are: External Enable, Select bit 0, and Select
	<u>bit1</u> .
	The "select bit0" and "select bit1" together will
	designate a motor-on mode (see coding chart):
	<u>Coding chart</u>
	Rit 0 Bit 1 Result
	(motor-on mode #)
	0 0 0 1 0 1
	0 1 2
Motor Mode select bit0	1 1 3
	How to alter Motor-ON mode under Boot
	<u>Sequence</u> :
	Example of Switching Motor-on Mode in Boot Sequence
	(From mode #0 to mode #1)
	External enable $\begin{bmatrix} 1\\0 \end{bmatrix}$
	1
	Select bit 0 0
	Select bit 1
	Result (motor-on ³ / ₂
	mode #)
	mode #0 motor-off mode #1
	<u>Steps</u> :
	1. Equip these 3 sets of I/O:
	External Enable, Select bit 0, and Select bit1.
	באנטרומו בוומאוס, סטופטו אונ ט, מווע סטופטו אונ ד.

Input Functions	Description
	 2. Go to UI > Input section, define the above- mentioned 3 sets of I/O pins. 3. Switch motor off (by setting the External enable I/O to 0). Then set the combination of pins "Select bit0" and "Select bit1" to the desired mode according to the coding chart. 4. Switch motor on (by setting the External enable I/O to 1). The motor is now turned on using newly-selected mode.
Motor Mode select bit1	Defines this pin as Motor Mode select bit1. See details in the column "Motor Mode select bit0".
Homing operation start	This function is for Boot Sequence (see Ch. 4.8). If the Motor-ON mode under Boot Sequence is set to Homing mode, the driver will need to wait for a "start" signal to execute homing. Once "Homing operation start" signal is activated, the motor will start performing the homing mode.
Force Home Position	When Home is not found/set yet, make this input signal high to force the driver to set the motor's present position as Home. The corresponding Motor-ON modes should be position-related modes, such as <i>direct position</i> or <i>profile position</i> modes.

4.7.2 Output

Meaning: The signals that are sent from the driver to other devices.

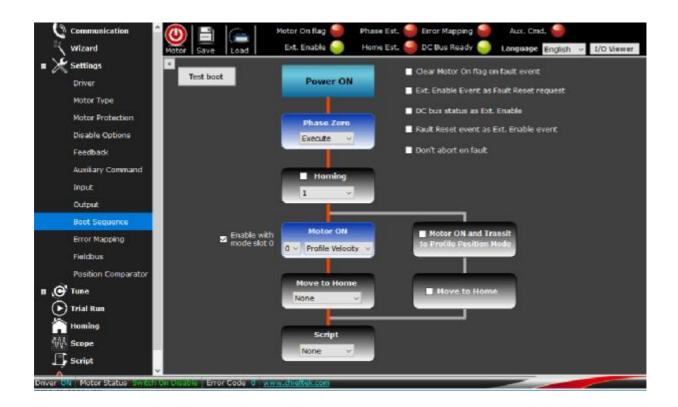
ı Output:

Communication	Motor Save	Load	Motor On Ext. Ena		Phase E Home E
Settings	< Pin No.	Test	Invert	Fun	oction
Driver	Dout-A0 Dout-A1			None None	~ ~
Motor Type	Dout-B0			None	~
Motor Protection	Dout-C0	-		None	~
Disable Options	Dout-C1			None	~
Disable Options	Dout-C2			None	~
Feedback					
Auxiliary Command					
Input					
Output					
Boot Sequence					

1 Output panel explanation

OUTPUT		
State	A graphic element that toggles between green and red	
to reflect the on or off state of the actual input.		
Test	Click this button to simulate output.	
Test	Test	
Pin No.	Specifies a pin.	

Function	Defines the functionality of the digital output. None Ready for Ext. Enable STW:Fault STW:Voltage Enabled STW:Voltage Enabled STW:Target Reached Holding Brake STW:Homing Attained STW:Homing Error Home Established Operation Enabled Motor at rest Pos. Compare 0 Out Pos. Compare 1 Out Pos. Compare 2 Out Ims Loop Tick EtherCAT IRQ EtherCAT SYNC0 EtherCAT SYNC1			
	Inverts the polarity of a digital output. Tick this box to invert the polarity.			
Invert	\sim Unticked: normal open. \sim \sim			
	1 Ticked: normal close. $\circ - \bullet - \bullet - \circ$			


4.7.2.1 Output Functions

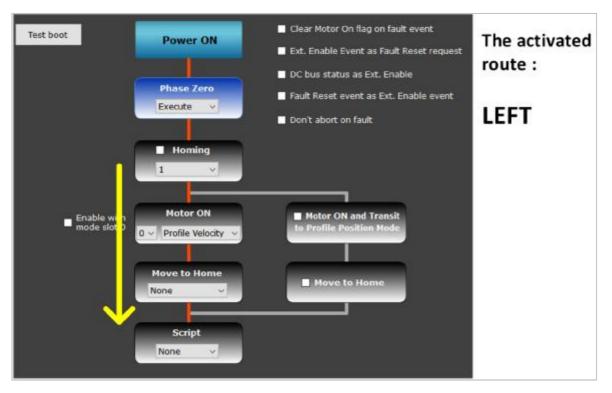
Output Functions	Description – When signal state is HIGH
Ready for Ext. Enable	If there is no error and the motor-on flag is on, send out a signal saying that the drive is ready for taking external enable commands. (Hence, if External Enable is activated, the motor can respond to controller's commands.)
STW: Fault	Defines this pin as signal state of the status word "Fault". (High = Fault occurs)
STW: Target Reached	Defines this pin as signal state of the status word "Target Reached". (High = target reached)
Brake	Links the Holding Brake demands to this pin.

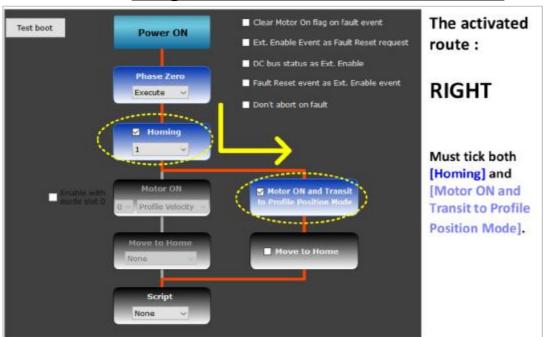
STW: Homing Attained	This is for Homing mode. Defines this pin as signal state of the status word "Homing Attained". (High = Home attained)
STW: Homing Error	This is for Homing mode. Defines this pin as signal state of the status word "Homing Error". (High = Homing error occurs)
Home Established	Sends out a signal constantly saying that Home is already established.
Operation Enable	Motor ON and the drive is ready for receiving motion command.
Motor at rest	Sends out a signal that the motor is at rest. [Definition]: In the Motor Protection's Velocity section, users can define Velocity Zero Threshold and Timeout parameters. If velocity is greater than this threshold and lasts for a period (Timeout) – the motor will be regarded as moving, vice versa. Velocity Zero Threshold <u>1000</u> <u>ms</u>
Pos. Compare 0	Sends out a signal when the #0 set condition of Position
out	Comparator is satisfied.
Pos. Compare 1 out	Sends out a signal when the #1 set condition of Position Comparator is satisfied.
Pos. Compare 2 out	Sends out a signal when the #2 set condition of Position Comparator is satisfied.

4.8 Boot Sequence

Boot Sequence is for configuring what initial actions to take after the drive is powered on. The initial actions may include find-phase, homing, motor-on, moving to home, and executing script.

There are two routes, LEFT and RIGHT, in boot sequence. The chosen route will be highlighted in red.

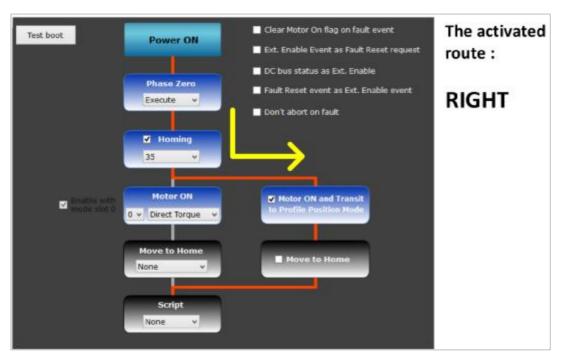

- The LEFT route allows users to do any configuration.
- The RIGHT route shows and alters the <u>interlinked same settings in the</u> <u>Homing section</u>. The settings of the RIGHT route (even when it is not activated) will be synchronized with those of the Homing section, see pictures below.



(\downarrow The interlinked same setting in Homing section)

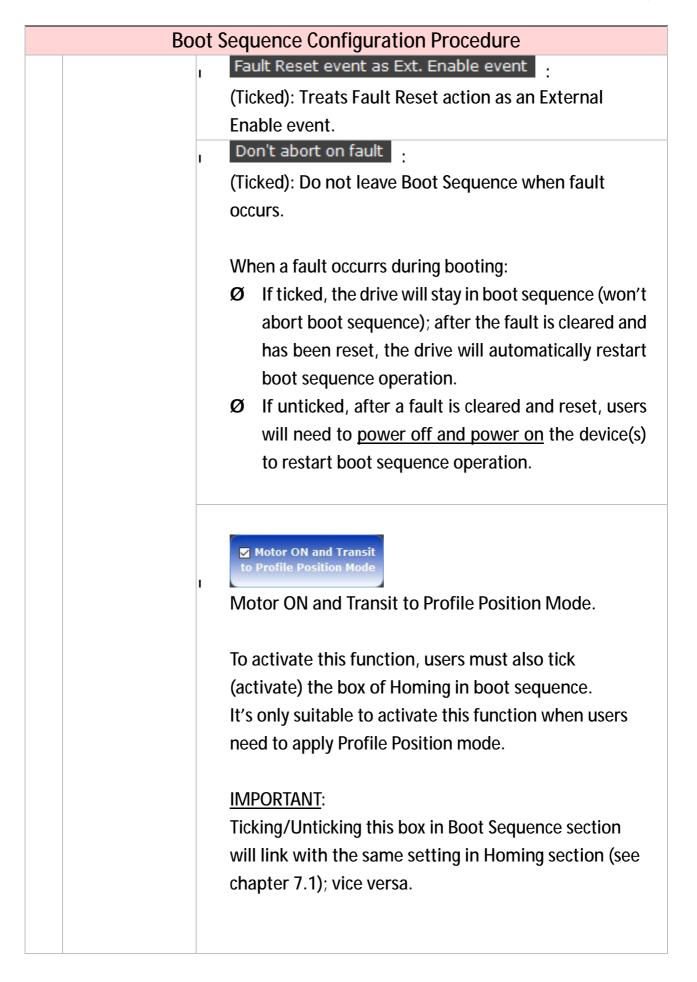
See here for activation conditions:

\downarrow (1): When LEFT route is activated



\downarrow (2): Conditions to activate the RIGHT route

<u>Note</u>: In Boot Sequence, only when <u>BOTH</u> the boxes of [Homing] and [Motor ON and Transit to Profile Position Mode] are ticked, can the RIGHT route be activated.


4 (3): If both routes are ticked, only the RIGHT route will be activated

 $\underline{\text{Note}}:$ In Boot Sequence, if both routes are ticked, only the RIGHT route will be activated.

Please see the configuration procedure of boot sequence on subsequent pages.

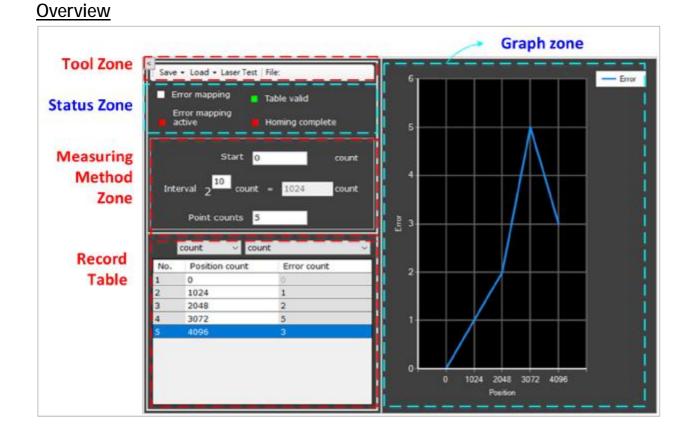
	Boot Sequence Configuration Procedure						
1	Presetting	Clear Motor On flag on fault event (Ticked): Deactivates "Software Enable" when fault occurs.					
		Ext. Enable Event as Fault Reset request					
		(Ticked): When an External Enable event occurs, treat					
		it as a fault reset action.					
		<u>Note</u> :					
		Ø "Event" means that the External Enable was off and then on.					
		Ø When a fault occurs, usually the following steps are taken:					
		(1) Fault occurs \rightarrow (2) Resolve the fault by					
		personnel \rightarrow (3) Perform "Fault Reset" \rightarrow (4) Perform External Enable "off" \rightarrow (5) Perform					
		External Enable "on".					
		However, if users don't have an I/O for "Fault					
		Reset", tick this box so that Fault Reset will be executed between step (4) and (5).					
		DC bus status as Ext. Enable					
		(Ticked): Treats DC bus signal as External Enable event.					
		Occasion example:					
		If AC power is cut off, the driver will detect that AC					
		power is too low; hence a fault occurs. When AC					
	power is turned on again and is successfully converted						
		into DC power (in this case the DC bus signal will rise), treat the DC bus signal as an External Enable event.					
1							

	Во	ot Sequence Configuration Procedure
		Move to Home Move to Home (Move to the <u>new</u> zero position.)
		This box is a subset under the higher box [<i>Motor ON and Transit to Profile Position Mode</i>]. To use this function, the [<i>Motor ON and TransitMode</i>] box needs to be activated first.
2	Phase Zero	Performs phase-find. <u>Note</u> : If no hall sensor is installed, the motor will move for a certain distance while performing phase-find.
3	Homing	Homing : Tick this box to include Homing in the boot sequence. 35 : Choose a Homing method from # -12 to #35, see chapter 7.
4	Motor ON	 Motor-ON and use the selected mode for operation. Enable with mode slot 0 Tick this box to include Motor-ON in the boot sequence. I I I I Ø Users can assign 4 sets of motor-on mode slot (#0 to #3). Ø #0 is default for booting. Ø #1~3: I users need to alter motor-on mode (e.g., from

	Ro	ot Sequence Configuration Procedure
	BC	 Profile Position to Profile Torque), they'll need to configure in this column. #1~3 need to work with physical I/Os. Please refer to chapter 4.7.1.1 – "Motor Mode select bit0" for detailed configuration. Options of motor-on mode: Direct Position Direct Position Direct Velocity Profile Position CyclicSyncPosition CyclicSyncVelocity Direct Position CyclicSyncVelocity CyclicSyncVelocity Direct Position CyclicSyncVelocity Cycli
5	Move to Home	Move to Home Execute Move to Home or not.
6	Script	Run the script or not.
7	Test boot	Test boot Click to test your boot sequence settings.

4.9 Error Mapping

It might be possible that the encoder feedback is not accurate.


For instance, the optical scale is not installed straight. In this case, suppose both the position command we give and the position feedback obtained from the present encoder is 1000 cnt. Yet, when measuring the position with a finer device—such as a laser interferometer—we might find the actual position is 1003 cnts instead.

This Error Mapping function is for troubleshooting abovementioned problems. To do so, users will need a device which has finer resolution than that of the currently-used encoder.

Next, users will need to perform homing first, designate a range (area) to be calibrated, and configure the error mapping settings. When error mapping function is activated, driver will automatically compensate the differences (i.e. errors) in the <u>designated range</u>*.

Note*: Errors occurred outside the designated error mapping range will NOT be compensated.

See explanation of each interface element in chapter 4.9.1. See configuration steps in chapter 4.9.2.

4.9.1 Error Mapping Interface

4.9.1.1 Tool Zone

a. Save:

Save to File or To Flash.

Note:

Your settings must be saved to Flash to be processed. If you only save to File, the parameters will NOT be loaded to the driver to execute.

b. Load:

To load settings from file or Flash.

c. Laser Test / Calibration Move:

Click it to jump to the [Calibration Move] panel.

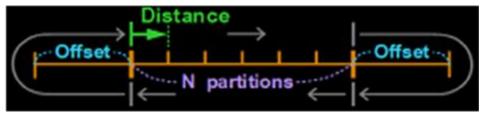
Calibratior	Move-			arti				
	Distance	\rightarrow 1–					Back to	Error mapping
(F. Offset	← N pa	urtitions — ←	Offset	Use	error map	data	1 Cycle	5
Distance (mm)	0	Partition (N)	1	Offset (mm)	0	Wait Time (ms)	4000	Start

This panel is a convenient tool for designing a set of consecutive motor movements to work with a finer device.

(1) Distance:

The length (mm) of <u>each</u> partition.

(2) Partition:


How many partitions (N) to be measured by the finer device.

(3) Offset:

After one cycle of consecutive movements [N partitions] is completed, <u>the distance (mm) that the motor needs to move</u> <u>further forward and then backward onto the end of the last</u> <u>partition</u>. See image below, marked in blue.

<u>Note</u>:

The Calibration Move cycles will be conducted in round-trip.

(4) Wait Time:

How much time (ms) the motor needs to pause motion after reaching one end of a partition. Key in values from 2000 to 10,000.

(5) Cycles:

How many times to repeat the set of consecutive motor movements.

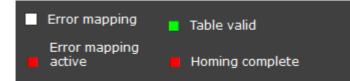
(6) Use error map data:

Use error map data

Tick to automatically set the parameters of "Distance" and "Partition" to be in line with the settings of "Interval" and "Point counts" on Error mapping panel.

For example:

4 Partitions = 5 Point counts.


(7) Start:

Start the whole configured calibration moves.

(8) Back to Error mapping:

Click to jump back to Error mapping panel.

4.9.1.2 Status Zone

a. Error mapping:

Tick to check prerequisites and activate the error mapping function.

Note:

It is mandatory that BOTH the two prerequisites—Table valid and Homing complete—are fulfilled (signal ON, shown in green) to activate the Error Mapping function.

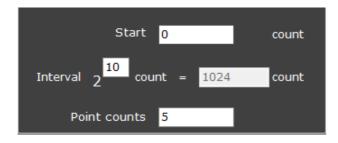
If this box **Error mapping** is ticked while either or both of the prerequisite signals are off, the activation of error mapping will wait until BOTH prerequisites are fulfilled.

b. Table valid:

Note:

You must first perform "Save to FLASH" to check the validity of data.

The driver will check:


- Table size (namely, point counts not exceeding maximum default).
- Validity of data version (namely, the version of Measuring Method Zone and Record Table is correct).
- c. Homing complete:

Green if Home is established.

d. Error mapping active:

Turns green (meaning error mapping function is activated) on the condition that both "Table valid" and "Homing complete" signals are on.

4.9.1.3 Measuring Method Zone

a. Start:

Start measuring from what position (count). This zone is where you set the designated area to be calibrated.

b. Interval:

How big the internal between measurement nodes needs to be. The Interval is based on {2 to the [user configuration]th power}.

c. Point counts:

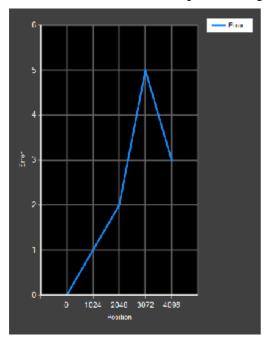
How many nodes.

4.9.1.4 Record Table

Manually key in here the difference (i.e., error count) between the finer device and the encoder feedback.

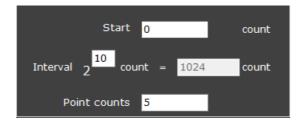
No.	Position count	Error count	
1	0	0	
2	1024	1	
3	2048	2	
4	3072	5	
5	4096	3	

a. Position count:

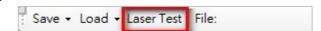

Shows the actual position of each node.

b. Error count:

Key in difference(s) manually.


4.9.1.5 Graph Zone

The UI will automatically draw a graph according to the given record table.



4.9.2 Configuration Steps

- 1. Perform Homing first.
- 2. Configure the Measuring Method Zone:

- (1) where to start measuring,
- (2) how many counts the interval is, and
- (3) how many nodes (i.e., Point count) you need. Each node is equally spaced.
- 3. Configure "Calibration Move":
 - (1) Click "Laser Test".

- (2) Configure the "Calibration Move" parameters (see chapter 4.9.1.1, point c.).
 OR, for convenience, click Use error map data button.
- (3) Then set the Offset, Wait Time, and Cycles. See picture below.

-Calibration Move	Back to Error mapping		
offset	☑ Use error map data	3 Cycle	25
Distance 0.512 Partition 4 (mm) (N)	Offset 20 Wait Tin (mm) (ms)	ne 2000	Start

(4) On the "Motion" panel, choose <u>Profile Position</u> mode. Configure the motor parameters of Profile Velocity, Profile Acceleration and Deceleration.

Motion ———											
Control Mode	3 - Pro	file Position	~	M	otor ON		Run	R	everse	Zero	
S-Curve Sampl	e Time	0	ms		Relative I	Move	0		Absolute	Move —	mm
Profile V		80	mm/		Go Backv	vard	Go For			Set	Go
Profile Accele		500 500	mm/	1-7	🗹 Repea	t			Point B	0	mm
		500		5-	Repeat Dwell tim	ne(ms	50			Set	Go
Estimated run	n time(s)	0			0		repea	aung	Repea	it	

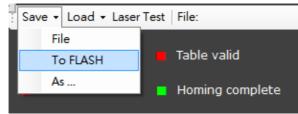
(5) Click Motor-ON button.

(6) Click Start button.

_ Motion	The second se			a. 154				
Control Mode 3 - Profile	Position 🗸 N	Notor ON Run	Reverse	Zero				
S-Curve Sample Time	0 ms	Relative Move —— Length 131.07		Move				
Profile Velocity	80.000 mm/s	Contraction of the		Set Go				
	00.000 mm/s²	Go Backward Go Fo	orward Point B	0 mm				
Profile Deceleration 5	600.000 mm/s²	-Repeat		the second s				
Estimated run time(s)	0		top eating Repea	Set Go t				
Calibration Move								
Offset N partitions	s c c c c c c c c c c c c c c c c c c c	Back to Error mapping Use error map data Cycles						
Distance 0 Par (mm) (N	tition 1	Offset 0 (mm)	Wait Time 4000 (ms)) Start				


The motor will then move to the user-assigned-position to start measuring (see Ch. 4.9.2, point #2) and perform the Calibration Move.

During calibration, the UI will show which cycle and which partition (N) is being performed.


Calibration Move	Cycle: 1 N: 3	Back to Error mapping
colfset	☑ Use error map data	3 Cycles
Distance 32.768 Partition 4 (mm) (N)	Offset 0 Wait Time (mm) (ms)	4000 Stop

- 4. After calibration move(s) are finished, click **Back to Error mapping** button.
- 5. Record the differences:

Manually key in the difference(s) between the calibration result and the feedback of presently-used encoder to the Record Table. A graph shall automatically show on the right side.

6. Save to Flash.

Note:

The configuration parameters must be saved to "Flash" to be processed by the driver.

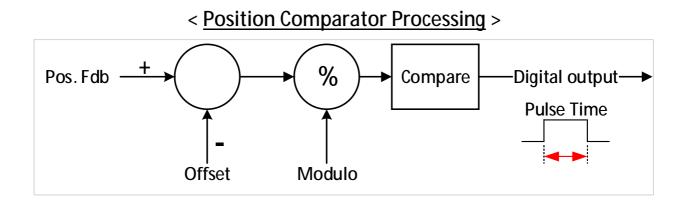
After saving to FLASH, system will check the validity of record table. If valid, the signal icon will turn green.

7. Tick the "Error Mapping" box.

Tick this box so the UI will automatically check if BOTH the signals of [Table valid] and [Homing complete] are high (shown in green). If yes, the Error mapping function will be activated.

Now calibration is successfully completed.

4.10 Position Comparator


Feedback	@ = _	Motor On flag	Phase Est.	🍚 Error Mapping 🥮	Aux, Cmd. 🥮
Auxiliary Command	Motor Save Load	Ext. Enable	Home Est.	😑 DC Bus Ready 🥯	ISIDIISUS English v I/O Viewe
Input	<				
Output	Pos. Fdb +	>→(%	Compare	Digital output	
Boot Sequence	ros. rob		Compare	Pulse Time	
Error Mapping		t. t			
Fieldbus	Of	fset Mode	alo		
Position Comparator					
G' Tune		tet	2nd	3rd	
Current	Compare Mode	Greater Than 🗸	Greater Than 🗸	Greater Than ~	
Phase	Offset	0	0	0	
Velocity	Modulo	0	0	0	
Position	Pulse Time	0	0	0	
Gain Switch	Compare Level Low	0	0	0	
Cogging Cmp.		-			
Trial Run	Compare Level High	0	0	0	

This function can be seen as a virtual limit switch.

Application:

You can configure up to 3 sets of position conditions as limit switches.

Assign your output pin(s) to "Pos. Compare 0~2 out". When the motor moves into a certain area or onto a spot, the position comparator signal will rise and trigger an output to other external devices.

	1st	2nd	3rd
Compare Mode	Greater Than \vee	Greater Than 🗸	Greater Than $ \!$
Offset	0	0	0
Modulo	0	0	0
Pulse Time	0	0	0
Offset Modulo Pulse Time Compare Level Low	0	0	0
Compare Level High	0	0	0

a. Pulse Time:

For how much time (ms) the Position Comparator output signal needs to rise after the conditions you configured are satisfied. If this is set to 0, the comparator function is deactivated.

b. Compare Mode

This parameter works with the "Compare Level High/Low" parameters.

Greater than:

It corresponds to "Compare Level High". Signal rises if the compare outcome is greater than the configured value.

Less Than:

It corresponds to "Compare Level Low". Signal rises if the compare outcome is less than the configured value.

In Range/Outside Range:

Signal rises if the compare outcome is between the Compare Level High and Low values.

c. Offset

Offsets against the position feedback value then the comparator will start counting from the difference value.

For example:

If the motor is now at position 10000 cnt, configure "Offset" value to 2000 and set the "Compare Mode" to "Greater than"; then set the "Compare Level High" value to 15000. Hence:

- The comparator will start counting from 8000 (10000 2000 = 8000) and needs to move more than 7000 cnt to reach the configured goal (15000).
- The signal will rise when the motor is at pos. 17001 (not 15001).

d. Modulo

Sets a devisor value and use the remainder value for processing. Hence, the remainder will range from 0 to devisor value minus 1. It will look like the comparator counts from 0 to the devisor value minus 1, and then count from 0 again cyclically.

For example:

If you configure Modulo value to 3000, the comparator will count from 0 to 2999 and to 0, then up to 2999 again cyclically.

1 mod 3000	is 1
2 mod 3000	is 2,,
2999 mod 3000	is 2999
3000 mod 3000	is 0
3001 mod 3000	is 1
3002 mod 3000	is 2, and so on.

e. Compare Level Low

A bench-mark to be compared when using "Less Than" in Compare Mode.

f. Compare Level High

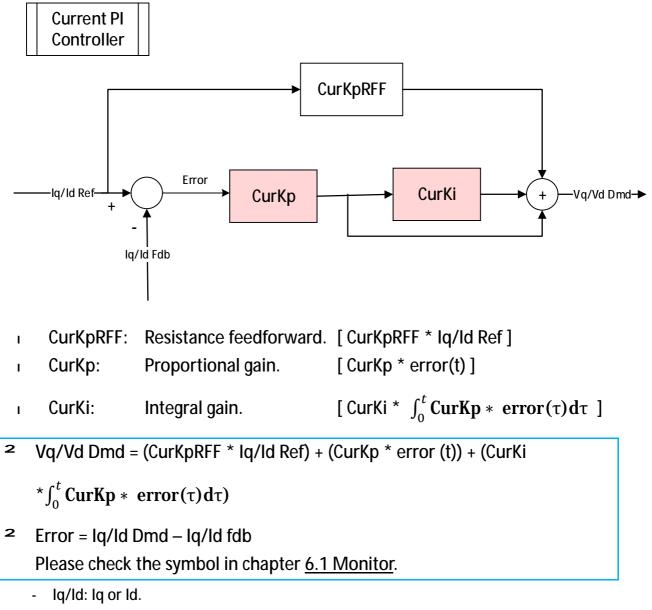
A bench-mark to be compared when using "Greater Than" in Compare Mode.

Chapter 5 Tune

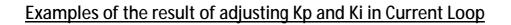
There are 4 basic auto-tuning functions in the cpc UI: Current Loop, Phase, Velocity Loop, and Position Loop. However, it's possible that the performance of autotuned gains might not suit users' needs—in this case, users can tune by themselves via adjusting parameters of each individual loop. Users can adjust the value of gain and use Bode Plot or Time Response function to view and evaluate the tuning result.

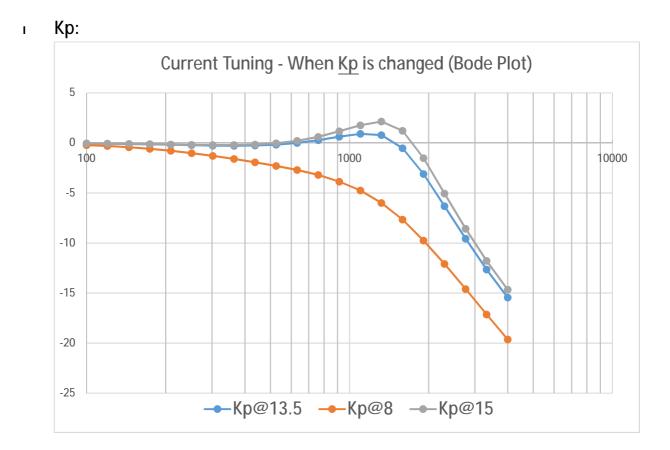
When tuning, PI control is applied.

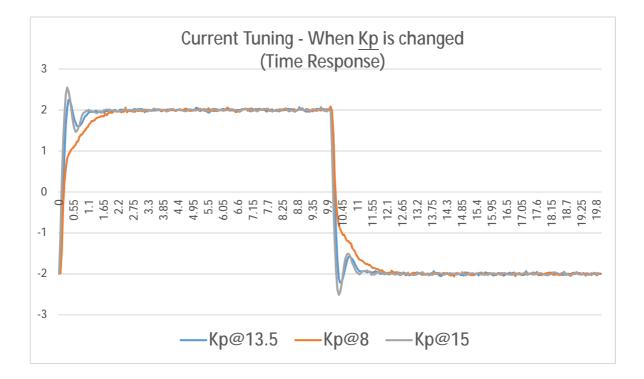
In addition, during auto-tuning, only the feed forward in <u>Velocity</u> loop will be adjusted automatically; for other loops the feed forward needs to be adjusted by users.


For the Bode Plot and Time Response functions, cpc provides convenient tools to view graphs better:

Loop	Tool	Zoom Mode	Zoom Reset	Save as txt	Show Prevalue
Curront	Frequency Response	V	V	V	
Current	Com PCurrentFrequency ResponseVTime ResponseVelocityFrequency ResponseVTime Response		V	V	V
Volocity	Frequency Response	V	V	V	
Loop Zoom Mode Zoom Reset Current Frequency Response V V Time Response V Velocity Frequency Response V V Time Response V	V	V			
Position	Time Response		V	V	

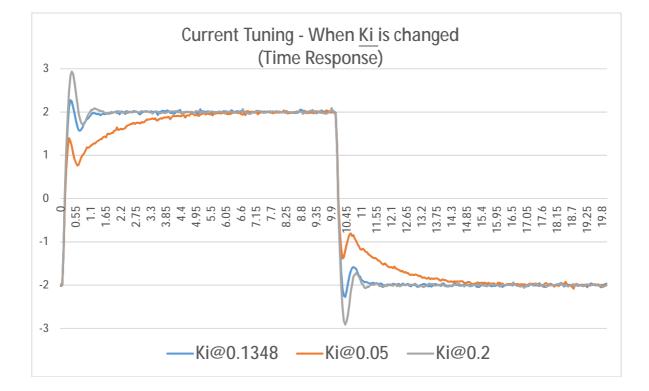

See details in related chapters.


5.1 Current


5.1.1 Current Loop Gain

- Vq/Vd: Vq or Vd.





I

GUI User Guide - Ver. 3.0

5.1.2 Auto Tune

AutoTune Frequency R	esponse	Time Response	
Test Current 100	% of Conti	nuous Current	
Frequency Start	100 Hz	Frequency En	d 4000 Hz
Stable ' ' '	 •		Fast
Cancel			
	R	unning	

a. Test Current:

Percentage of the continuous current for testing.

b. Frequency Start/End:

The frequency range of testing.

c. Stable/Fast:

Expected feedback response speed toward demands.

d. Dead time compensation:

Compensate the time of the motor idle.

5.1.3 Frequency Response (Bode Plot)

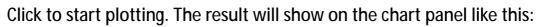
You can plot the frequency response of the current loop.

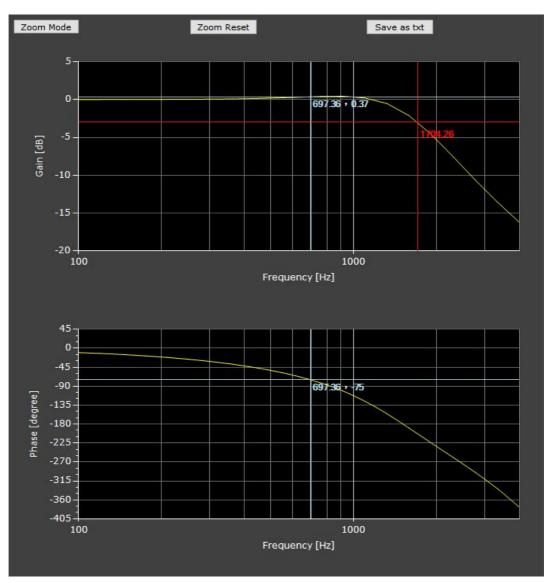
Click the Frequency Response index, then click the Bode Plot button to start.

Test Current 100 % of Continuo	
	ious Current
Frequency Start 100 Hz	Frequency End 4000 Hz
Sample Count 20	
Bode Plot	
Com	plete

a. Test Current:

Percentage of the continuous current for testing.


b. Frequency Start/End:


The frequency range.

c. Sample Count:

Defines how many <u>data points</u> (i.e., sample counts) will be captured within the configured frequency start and end. As a result, the more sample counts captured, the more data will be included in the exported .txt file, and the more time is needed to complete bode plot.

d. Bode Plot:

- e. Zoom Mode **Zoom Mode** (on chart panel): Click to turn off the focus-line in order to apply the zoom function.
- f. Zoom Reset Zoom Reset (on chart panel): Resets zoom.

g. Save as txt Save as txt (on chart panel):

Exports the graph data in .txt format. Users can rearrange the exported data via Excel.

Note:

The exported data is separated by semicolon (see picture below). To rearrange the data, users may consider using the "text to column" function in Excel.

<The original exported graph data in .txt>

Curre	ent_Bode	Plot.txt	. –		×
檔案(F)	編輯(E)	格式(O)	檢視(V)	說明(H)	
120;0.0 145;0.0 209;0.0 251;0.0 302;0.0 364;0.0 437;0.1 526;0.2 632;0.2 632;0.2 761;0.4 915;0.4 915;0.4 1100;0. 1323;-0 1591;-2 2300;-7 2766;-1 3326;-1	090253 0148468 0196541 0266609 0364846 0483341 0682410 0997036 1493026 222686; 222686; 222686; 222686; 222686; 222686; 243221 416345; 4452508 0.52432 2.13033 4.60279 7.56192 10.6267 13.5397	71; -10. 8; -12.3 9; -14.9 3; -17.9 1; -21.6 6; -26.0 3; -31.3 6; -37.9 ; -45.71 -55.406 ; -67.34 -82.454 ; -125.9 1; -125.9 1; -125.9 1; -224.6 2; -259. 4; -294. 6; -333.	4188 6378 8145 5849 5037 9504 1852 581 42 612 59 678 447 7107 7138 56 2364 6219 1454		^
4000;-1	10.2201	8;-377.	5102		~

5.1.4 Time Response

Test Current 100 % of Continuous Current Frequency 50 Hz Wave Type Square \checkmark Trace	AutoTune Frequency Re	esponse Time Response
Wave Type Square V	Test Current 100 %	6 of Continuous Current
	Frequency 50	Hz
Trace	Wave Type Square	✓
	Trace	

a. Test Current:

Percentage of the continuous current for testing.

b. Frequency:

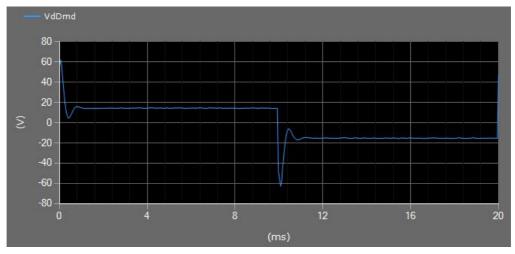
The frequency of the wave.

c. Wave Type:

Choose preferred wave form from Square, Triangle, and Sine.

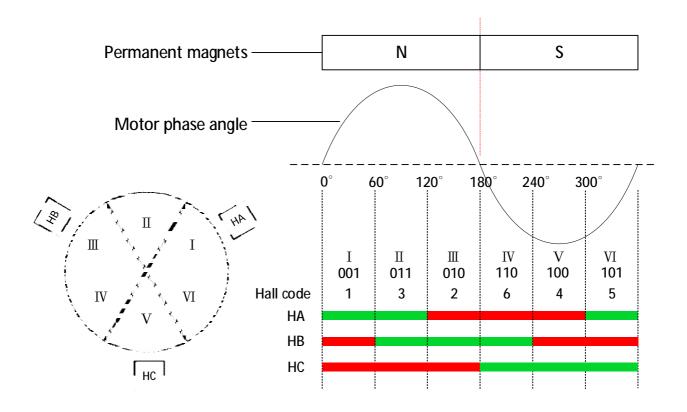
- d. Trace:
 - Click to test and see how the motor feedback differs from the driver's command.
 - View the upper graph (on the right side) to compare the difference between Current Demand (green) and Current Feedback (red).
 The graph helps you evaluate whether the tuning result is ideal.

- e. Zoom Reset Zoom Reset : To reset zoom.
- f. Save as text Save as txt


Exports the graph data into .txt format.

g. ShowPreVa

Click to see the previous Current Feedback and Voltage Demand.


h. VdDmd graph:

To view the voltage demand.

5.2 Phase

The motor utilizes three-phase coils and permanent magnets to generate thrust force. The coil phase and the motor electric angle should be checked before operation. If you have installed hall sensors, these 3 signals—HA, HB and HC— will show you where the electric angle is now.

5.2.1 Auto Phase

Before operating the motor, there are two things to define:

(1) User-defined motor direction.

It's important that the <u>user-defined opposite/negative</u> (or CW/CCW) <u>direction</u> and <u>the encoder's counting direction</u> are consistent.

Performing Auto Phase function can configure them to be consistent.

(2) Hall sensor.

Click "Start AutoPhase" and <u>manually move the motor in positive</u> <u>direction</u>. In addition, the driver will check the pole pitch parameter automatically.

If Autophase function is unusable, please see how to manually set phase in chapter 5.2.4.

-Auto Phase		
Autornase		
Test Current	100	% of CurCont
Test Time	1000	ms
Cycle Margin	30	% of PolePitch
Actual Pole Pitch Cycle		
HA HB	HC	
_ _		
Start AutoPh	ase	

a. Test current / Test time:

Percentage of the continuous current for testing.

b. Cycle Margin % of PolePitch:

Allow this percentage of difference between the configured pole pitch value and the actual pole pitch value.

If hall sensors are installed, this panel **HA HB HC** will show the Hall code status.

5.2.2 Phase Find

Phase Find function is for searching for the <u>actual phase automatically</u>.

There are 2 ways to locate motor phase:

- If hall sensors are installed, the driver will calculate the difference between motor and magnets to find phase.
- If not, the driver will execute <u>forced excitation</u> to find phase.

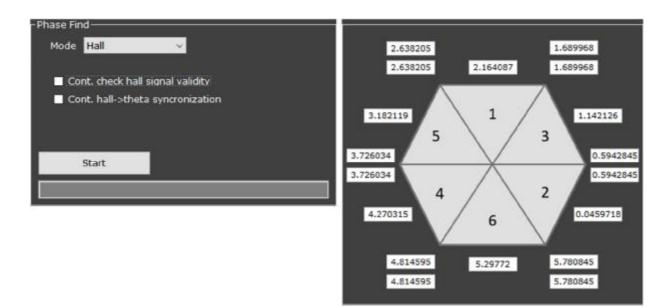
The cpc GUI provides 3 modes to find phase, click ______ to perform:

- I Force Zero
- ı Hall
- Abs. Enc. ST. Pos.

5.2.2.1 Force Zero

– Phase Find ———		
Mode Force Z	čero 🗸 🗸	
Test Current	50	% of CurCont
Task Time	1000	
Test Time	1000	ms
Slow down is moving	Force Zero ope	eration if motor
is moving		
Start		

Click Start button to execute forced excitation.


a. Test current / Test time:

Percentage of the continuous current for testing.

b. Slow down Force Zero operation if motor is moving

Slows down the forced excitation current; hence, the motor will move gradually instead of being strongly pulled to place at one time.

5.2.2.2 Hall

a. Cont. check hall signal validity

Checks the validity of hall signal continuously.

If all the three bits of hall code are 1 or 0, a fault event will occur.

b. Cont. hall->theta synchronization

A fail-safe mechanism.

Unticked:

After the phase is found using hall sensor, use only the encoder feedback to update the phase angle.

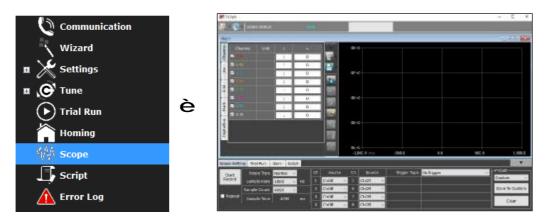
ı Ticked:

Continuously uses the <u>hall sensor data</u> to update the motor phase.

c. Theta table

For manually keying in theta values. The columns can accept values from 0 to 2 pi, unit is radium.

If AutoPhase is unusable, for instance the motor stroke cannot contain a complete motor pole pitch, users will need to manually set phase (see Ch. 5.2.4) and key in each electric angle's Theta value which can be obtained by using Scope function (see how in Ch. 5.2.2.2.1).


5.2.2.1 Steps—Obtaining the motor electric angle theta value

1. Execute Force Zero.

Go to: Settings >Tune > Phase > Phase Find > select Force Zero mode, then click Start.

-Phase Find		_
Mode Force Ze	ero 🗸	
Test Current	100	% of CurCont
Test Time	1000	ms
Slow down F is moving	orce Zero op	peration if motor
Start		

2. Go to Scope function.

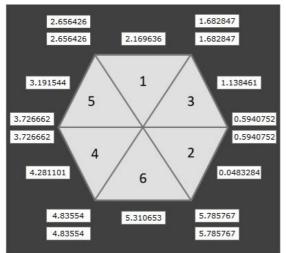
- 3. In Scope, set the source of channel 1 to ThetaElec and the source of channel 2 to Hallcode. Next, select "Normal" for Scope Type (see picture in step 4).
- 4. Click "Start Record" and manually push the motor for a distance.

Scope Setti	ng Trial Run	Gain Scri	pt	-1	r.		
Start	Scope Type	Normal 🕓		Ch	Source	Ch	Source
Start Record	Sample Rate	1000 🔻	Hz	1	ThetaElec 🗸	5	ChOff ~
	Sample Count	2048		2	HallCode 🗸	6	ChOff ~
	Sample Time	2048	ms	3	ChOff 🗸 🗸	7	ChOff ∽
				4	ChOff v	8	ChOff v

- 5. Now, wait for the "Receiving data complete" message to show up on top of the scope window.
- 6. Select the "PlotXY" option from the Plot Type List; then set "ThetaElec" to be the X axis value X axis ThetaElec .
- 7. Next, click on the Mark Tab, the screen should appear like this:

• 🛸	Scope Status													
ot 1														-
	MarkA	Mante	۵	1	1	X anis	The	taElec	🝷 🛃 Fele Effect	Forel R	sho to 1:1			
*					0	7.00	0							
1944														
CH2						5.25	0				+			
010														
344					- ব	3.50	0							
3-15														
1.00														
CH7 CH3						1.75	0							
сна					9.									
					0	0.00								
							000		1.569		3.139	4.708	3	6.2
pe Settir	ng Trial Run	Gain Scri	at .											۷
	Scope Type	Normal v	1	Ch	Source	e	ch	Source	Tripger	ype NoT	rigger		PreSet	=
Start	Sample Rate	1000 ~	-		ThetaEle	e ~	1.0	ChOff .					Custom	
	Sample Count	2048	1000		HallCode	· ·		choff 4					Save To Cust	tor
Repeat	Sample Time	2048	ms		choff		2	choff .					et	
				and the second second	choff	_	8	choff v					Clear	

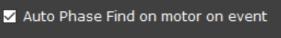
8. Click on the Mark A icon A. Put mouse curser on the junction of two signal sections and on the middle of a signal section (see images below). Users will need to note down the Mark A x-axis values shown on the Mark Tab.


Plot	-			K BAIS ThetaElec	- 🔽 Fala Effect 1	Found Radio to 1.1	E	
1		MarkA Minis		CONTRACTOR OF THE OWNER	· · ·	7109 7.987 0 1 1		
5	×	0.58141		7.000				
Line	- Y	2.05987					-	
-	CHI2			5.250				
Grid	040		0					
	CHI		5	3.500				
Mark	CHIS							
- MA	OR							
Digitalsus	GHI7			1.750				
ā	снв			1				
			9	0.000				
				0.000	1.569	3.139	4.708	6.277

(\downarrow the junction of two signal sections)

(\downarrow the middle of a signal section)

9. Keep moving curser and noting down all the Mark A x-axis values for the Theta table columns.



5.2.2.3 Abs. Enc. ST. Pos.

- Phase Find	
Mode Abs. Enc. ST. Pos	. ~
Absolute Encoder Single Turn Zero Offset	1397180
Single fulli Zero Olisec	
Start	

To operate with an absolute encoder, execute AutoPhase first in order to initially locate <u>what position count corresponds to "0" electric angle (i.e. theta value 0)</u>— this position count value is the "<u>Absolute Encoder Single Turn Zero Offset</u>" value.

5.2.3 Other Settings of Phase

Invert Commutation Polarity

a. Auto Phase Find on motor on event

Finds phase automatically on motor-on event.

b. Invert Commutation Polarity

CAUTION:

If the setting of "Invert Commutation Polarity" is changed, for the sake of safety, the setting of encoder polarity in Feedback section MUST also be altered. Otherwise, the motor may perform unexpected movements.

Next, if a hall sensor or an absolute encoder is used, it is ESSENTIAL to manually key in the following data respectively:

- Hall sensor: the Theta Table. (If no hall sensor is used, after changing BOTH polarity settings, perform Force Zero again.)
- Absolute encoder: the value of "Absolute Encoder Single Turn Zero Offset".

Please see detailed steps of manual-phase-setting in chapter 5.2.4.

A warning will show up when trying to change polarity.

SAFETY WARNING
In order to avoid unexpected movement of motor, it is NECESSARY to ALSO alter the setting of "Invert Encoder Polarity" in the Feedback section.
NEXT, if a hall sensor or an absolute encoder is used, it is ESSENTIAL to manually key in these data respectively:
 Hall sensor: the Theta Table. (If no hall sensor is used, after changing both polarity settings, perform Force Zero again.) Absolute encoder: the value of "Absolute Encoder Single Turn Zero Offset".
Please see detailed manual-phase-setting steps in the Phase chapter in GUI User Guide.

5.2.4 Manually Set Phase

Manually setting phase is to let users define the counting direction of encoder.

Steps:

1. Perform forced excitation first (IMPORTANT).

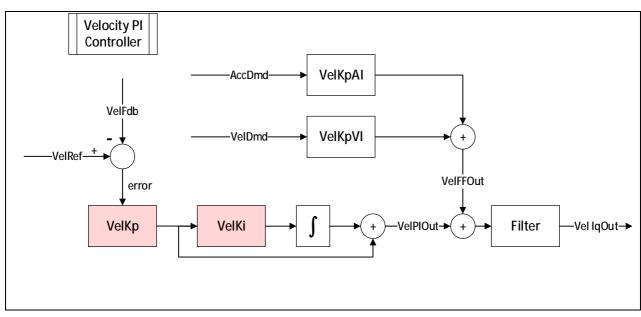
(Go to: Tune > Phase > Phase Find > Force Zero mode.)

2. Change BOTH the settings of <u>Invert Encoder Polarity</u>* and <u>Invert</u> <u>Commutation Polarity</u>**.

```
*: see chapter 4.5.1, point (b).
```

```
**: see chapter 5.2.3, point (b).
```

3. Re-define phase:


- If not using hall sensor: Perform "Force Zero" again.
- If using a hall sensor:
 Manually key in the Theta Table (see how in chapter 5.2.2.2.1).
- If using an absolute encoder:

Manually key in the value of "Absolute Encoder Single Turn Zero Offset" (*To be elaborated*).

5.3 Velocity

The flow diagram of velocity signal loop is shown in chapter 5.3.1.

The cpc firmware provides 3 sets of Kp and Ki. In addition, the "Auto Calculator" (see chapter 5.3.2) and the "Filter" (see chapter 5.3.3) are also useful tools for finer tuning.

5.3.1 Velocity Loop Gain

- VelKpAI: Acceleration feedforward gain, proprotional to load inertia.
 [VelKpAI * AccDmd]
- VelKpVI: Friction feedforward. [VelKpVI * VelDmd]
- velKp: Proportional gain. [VelKp * VelErr]
- VelKi: Integral gain. [VelKi * $\int_0^t \text{VelKp} * \text{VelErr}(\tau) d\tau$]

Note:

* $\int_0^t \text{VelKp} * \text{VelErr}(\tau) d\tau$ } * Filter(ω)

Please check the symbol in <u>6.1 Monitor</u>.

Velocity Loop Gain	Auto Calc	ulate Filter		
GainSet 1st 🗸	d dt	VelKpAI 4.016341E-05		
		VelKpVI 6.570275E-08		
VelK		VelKi 0.007489887	 -∳	Filter 🕂
Use Gain Scheduli			Velocity	Feedback

Please refer to the line graphs in chapter 5.1.1 about how the results will be by adjusting Kp and Ki gains.

5.3.2 Auto Calculate

VelKp 2.60)97E-05	VelKi 0.0	20611951	
Soft			, Stiff	F
Set 1st Gain	VelKp	2.6097E-05	VelKi	0.02061195
Set 2nd Gain	VelKp	0	VelKi	0
Set 3rd Gain	VelKp	0	VelKi	0

Drag the slider bar **Soft** to generate a group of gains and then click **Set 1st Gain** button—these auto calculated gains will be set into the driver.

5.3.3 Filter

Туре	Frequency	Damping
Low Pass 🛛 🗸	1668.205	0.707
Notch ~	3079.622	0.707
OFF	2500	0.35

Low pass filter:

Attenuates signals with frequencies higher than the cutoff frequency.

Notch filter:

Attenuates signals with frequencies in a specific range.

ı Off:

No filter.

5.3.4 Auto Tune

AutoTune	Frequenc	y Response	Time Response	
Dista	nce Limit	15	mm	
Velo	ocity Limit	60	mm/s	
Accelera	tion Limit	2500	mm/s²	
Stable				Fast
Cano	el	k		
		Running		

The motor will move back and forth while tuning velocity. Set the moving distance limit and click "Tune" button, the UI will tune the velocity loop gain automatically.

a. Distance Limit:

Maximum testing distance.

b. Velocity Limit:

Maximum testing velocity.

c. Acceleration Limit:

Maximum testing acceleration.

d. Stable/Fast:

User's expected feedback response speed toward demands.

5.3.5 Frequency Response (Bode Plot)

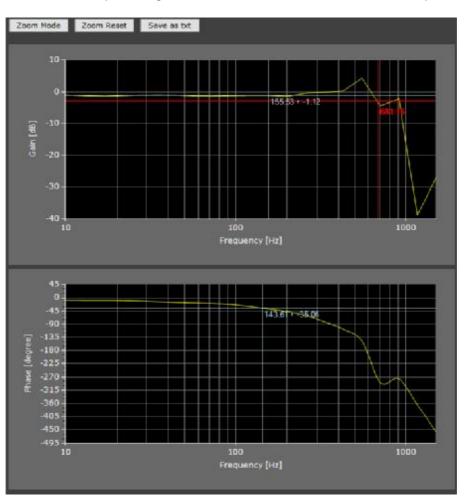
This function uses different frequencies of sine input from low frequency to high frequency then plot the response. Click "Bode Plot" to see the frequency response.

AutoTune Frequen	cy Response	Time Response	
Test Velocity	20 mm/s		
Frequency Start	10 Hz	Frequency En	d 1500 Hz
Sample Count	20		
Bode Plot			

a. Test Velocity:

The testing velocity.

b. Frequency Start / End:


Range of the frequency.

c. Sample Count:

Defines how many <u>data points</u> (i.e., sample counts) will be captured within the configured frequency start and end. As a result, the more sample counts captured, the more data lines the exported .txt file will include, and the more time is needed to complete bode plot.

d. Bode Plot:

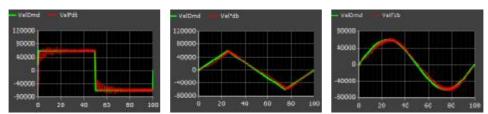
Click to start plotting. The result will show on the chart panel like this:

- e. Zoom Mode **Zoom Mode** (on chart panel): Click to turn off the focus-line in order to apply the zoom function.
- f. Zoom Reset Zoom Reset (on chart panel): Reset zoom.
- g. Save as txt Save as txt (on chart panel):

Export the graph data in .txt format. Users can rearrange the exported data via Excel.

Note:

The content of exported data is separated by semicolon. To rearrange the data, users may consider using the "text to column" function in Excel.


5.3.6 Time Response

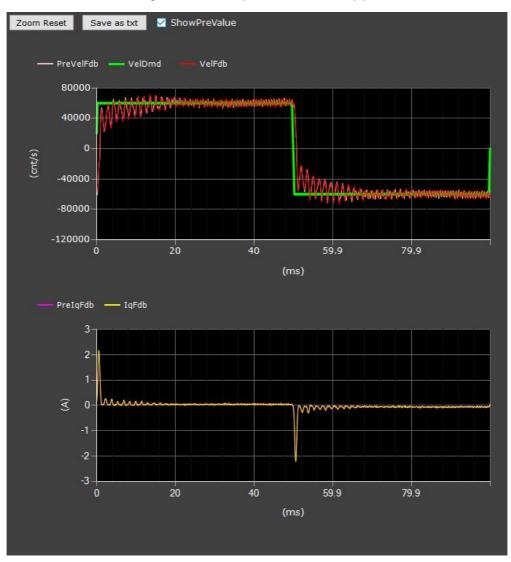
Click "Trace" to test and see how the motor feedback differs from the driver's command. View the upper graph to compare the response between the Velocity Demand (green) and the Velocity Feedback (red). It can help you observe whether the tuning result is ideal.

Wave Type	Square v			VelD		VelFdb			
Velocity Limit	30	mm/s		4000	- Alite				-
Frequency	10	Hz		G .					
Trace				-40000	,				
				-80000		20 40		во	100
			_				(ms)		

a. Wave Type:

Choose what type of wave form you want to trace: square, triangle, or sine wave forms.

b. Velocity Limit:


Maximum testing speed.

c. Frequency:

Testing frequency.

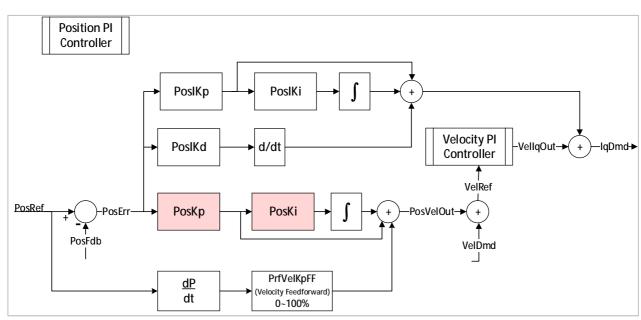
d. Trace:

Click to start tracing. The chart panel should appear like this:

- i. Zoom Reset Zoom Reset : To reset zoom.
- j. Save as text Save as txt

Export the graph data in .txt format.

K. 🔲 ShowPreVa


Click to see the previous Velocity Feedback and Iq Current Feedback.

I. IqFdb graph:

To view the Iq current feedback.

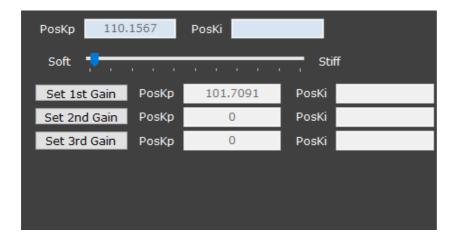
5.4 Position

Position loop gain provides 3 sets of tuning parameters. Due to that the position loop gains tuning is integral in the velocity loop tuning procedure, after the velocity gains are tuned, the UI will automatically tune the position loop gains.

5.4.1 Position Loop Gain

- PosIKp: Position error to current demand proportional gain. [PosIKp * PosErr]
- PoslKi: Position error to current demand integral gain. [PoslKi * $\int_0^t PosErr(\tau)d\tau$]
- PosIKd: Position error to current demand derivative gain. [PosIKd * $\frac{d PosErr}{dt}$]
- PosKp: Proportional gain. [PosKp * PosErr]
- PosKi: Integral gain. [PosKi * $\int_0^t PosKp * PosErr(\tau)d\tau$]
- PrfVelKpFF: Profile velocity Kp feedforward.

```
Note:


PosVelOut = PosKp * PosErr + PosKi * \int_0^t PosKp * PosErr(\tau)d\tau

IqDmd = VelIqOut + PosIKp * PosErr + PosIKi * \int_0^t PosErr(\tau)d\tau + PosIKd *

\frac{d PosErr}{dt}

Please check the symbol in chapter <u>6.1 Monitor.</u>
```

5.4.2 Auto Calculate

Drag the slider bar **Soft Soft So**

5.4.3 Other

PrflVelKpFF

- a. PrfVelKpFF: Profile Velocity Kp Feedforward Ranges 0~100 %. Default is 100%.
 - The profile velocity value is multiplied by the PrfVelKpFF value.
 - The primary effect of this gain is to decrease following error.

5.4.4 Time Response

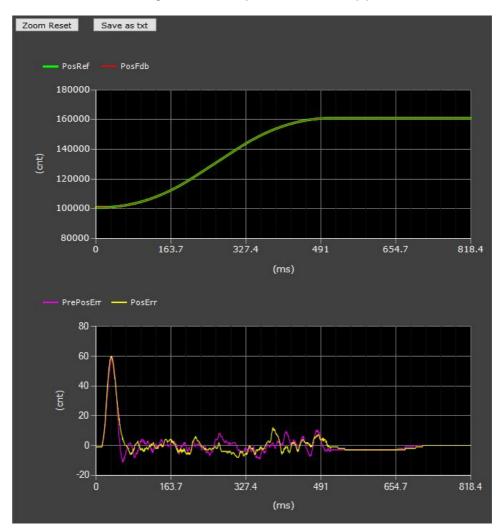
30.000	mm
50.000	mm/s
200.000	mm/s²
200.000	mm/s²
	50.000 200.000

a. Profile:

Tick to apply the Acceleration and Deceleration.

b. Distance:

The moving distance of testing.


c. Velocity:

The maximum testing velocity.

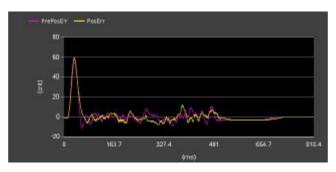
d. Acceleration/Deceleration:

The slope of the velocity.

e. Trace:

Click to start tracing, the chart panel should appear like this.

f. Zoom Reset:


Resets zoom.

g. Save as txt:

Exports the graph data in .txt format.

h. PrePosErr / PosErr:

Shows the present and the previous differences (i.e., error) between the Position Demand and Position Feedback.

5.5 Gain Switch

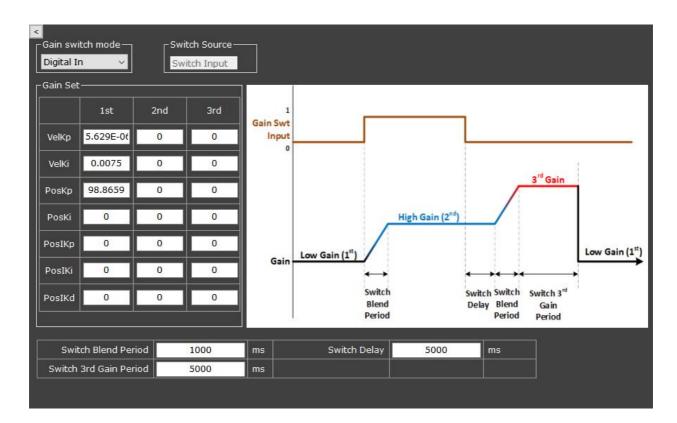
The cpc UI provides 3 gain-sets.

Users can use Gain Switch functionality to shift gain-sets when certain userdefined conditions are reached. For instance, users can use conditions of input signal, level trigger (see chapter 5.5.3, the Switch Level), and target reach flag as triggers to shift gain-sets.

To start, select Gain Switch Mode and, if applicable, the Switch Source.

5.5.1 Single-set mode

Only one gain-set will be used. Configure the parameters of that gain-set.

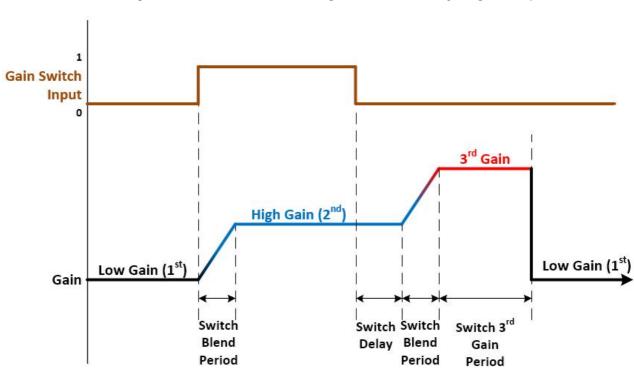

-Gain switch mode 1st Only -Gain Set						
	1st	2nd	Зrd			
VelKp	5.629E-06	0	0			
VelKi	0.0075	0	0			
PosKp	98.8659	0	0			
PosKi	0	0	0			
PosIKp	0	0	0			
PosIKi	0	0	0			
PosIKd	0	0	0			

Options:

1st Only: Use the 1st gain-set only.
2nd Only: Use the 2nd gain-set only.

 3^{rd} Only: Use the 3^{rd} gain-set only.

5.5.2 Digital In



Use digital signal input to determine which gain-set to be applied.

Go to Settings> Input (see chapter 4.7.1) to assign your input pin as "Gain switch to 2nd (or 3rd) set".

For example:

If there is only one input pin and it is set as "Gain switch to 2nd set," Gain-Set will switch to the 2nd one when a rising edge triggers signal input to the driver and will automatically switch to the 3rd one when a falling edge occurs; see the diagram below. For other occasions, please see the flow chart <Gain-set Switching Flow Chart> shown on subsequent page.

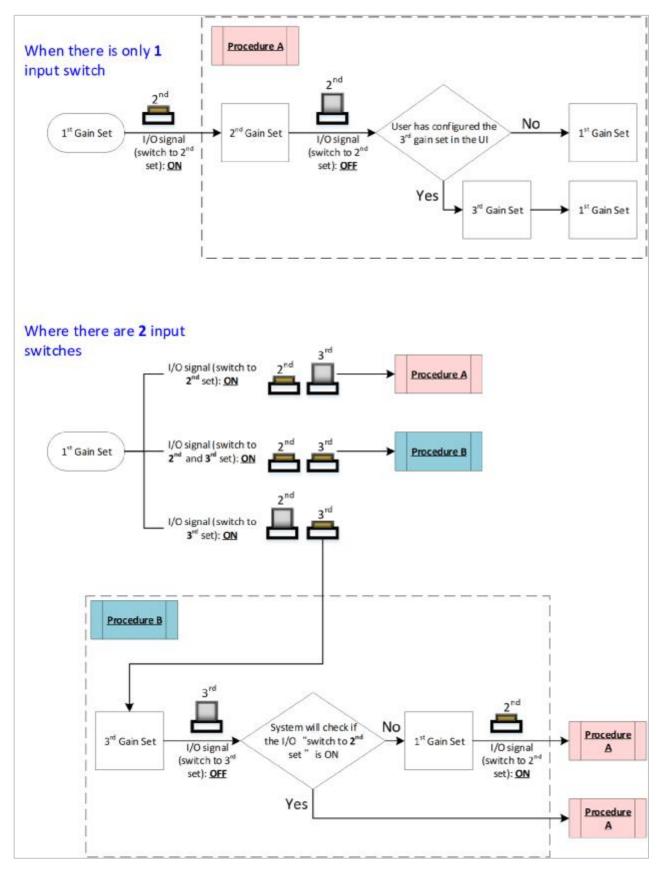
<<u>Diagram—Gain-set Switching Determined by Digital Input</u>>

a. Switch Blend Period:

The transition time (ms) from the 1^{st} gain-set to the 2^{nd} one, or from the 2^{nd} to the 3^{rd} .

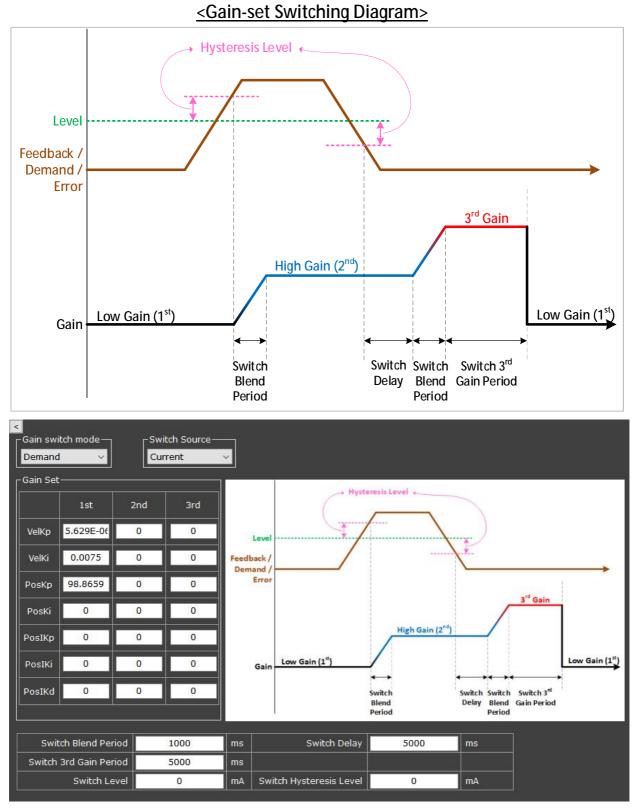
b. Switch Delay:

Prolongs the 2nd gain-set for this time duration (ms) after the falling edge is triggered.


c. Switch 3rd Gain Period:

Performs the 3rd gain-set for this time duration (ms) after the 2nd gain-set ends.

Note:


When this value is set to 0, the 3rd gain is deactivated.

< Gain-set Switching Flow Chart >

5.5.3 Demand & Feedback & Error

These three gain switch modes—Demand, Feedabck, and Error—are to shift gain-sets when user-configured conditions are reached. See example on next page.

Configuration example:

<u>Use the position demand value to determine which gain-set to apply</u>. When the position demand value is <u>greater than</u> user-configured "<u>Switch Level</u>" <u>Switch Level</u> 10 ont, the gain-set will shift as described in the

"Gain-set Switching Diagram".

a. Switch Blend Period:

The transition time from the 1^{st} gain-set to the 2^{nd} one, or from the 2^{nd} one to the 3^{rd} .

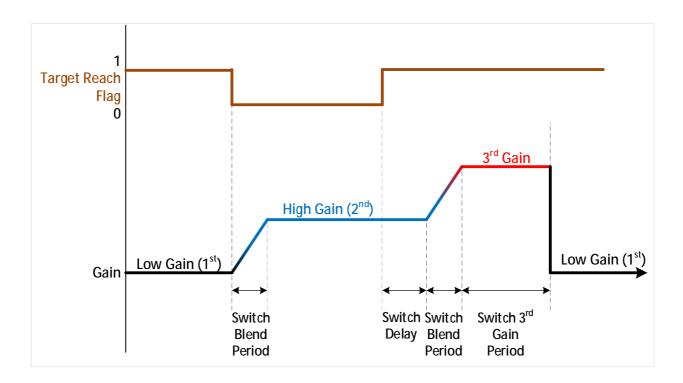
b. Switch Delay:

Prolongs the 2nd gain-set for this time duration (ms) after the Switch Source drops to lower than the hysteresis level (pink line in graph) <u>below</u> the Switch Level.

c. Switch 3rd Gain Period:

Performs the 3rd gain-set for this time duration (ms) after the 2nd gainset ends. When this value is set at 0, the 3rd gain is deactivated.

d. Switch Level:


The threshold of switching gain-sets (green line in graph).

e. Switch Hysteresis Level:

A buffer between the reached Switch Level and the start of switching gain-sets.

5.5.4 Target reach flag

When the Gain switch mode is set to Target Reach, the target reach flag will be used as a gain switch trigger as shown in the diagram below. (For explanation of target reach flag, see chapter 4.3.3.)

Target		1000	tch Source— get Reach	•	N				
Gain Se									
	1st	2nd	3rd	1 Target Reach					
VelKp	5.629E-06	0	0	Flag					
VelKi	0.0075	0	0						
PosKp	98.8659	0	0				1	3 rd Gain	
PosKi	0	0	0			High Gain	(2 nd)		
PosIKp	0	0	0		Low Gain (1 st)				Low Gain (1 st)
PosIKi	0	0	0	Gain		→			
PosIKd	0	0	0			witch llend	Switch Switch Delay Blend	Switch 3 rd Gain	in .
					P	eriod	Period	Period	
F				1					
Sw	itch Blend Peri	lod	1000	ms	Switch Delay	y 5000	ms		
Switc	n 3rd Gain Peri	iod	5000	ms					

a. Switch Blend Period:

The transition time (ms) from the 1^{st} gain-set to the 2^{nd} , or from the 2^{nd} to the 3^{rd} .

b. Switch Delay:

Prolongs the 2nd gain-set for this time duration (ms) after the falling edge is triggered.

c. Switch 3rd Gain Period:

Performs the 3rd gain-set for this time duration (ms) after the 2nd gainset ends.

When this value is set at 0, the 3rd gain is deactivated.

Chapter 6 Trial Run 🕑

There are 2 panels in Trail Run: Monitor and Motion.

Trial Run provides 8 channels for users to monitor the numeric data from the driver.

_Monitor —					
Channel NO.	Source	Value	Channel NO.	Source	Value
Ch1	PosFdb ~	-84588	Ch5	ChOff ~	
Ch2	PosErr ~	-1376	Ch6	ChOff ~	
Ch3	VelFdb ~	0	Ch7	ChOff ~	
Ch4	IqFdb ~	0.014	Ch8	ChOff ~	

Besides, you can use the Motion panel to test movements.

Motion ———									
Control Mode 3 - I	Profile Position	~ M	otor ON	F	Run	R	everse	Zero	
S-Curve Sample Tim	e O	ms	Relative		0		Absolute	Move — O	mm
Profile Veloci	y 10	mm/s	Distance Go Backy		Go For	mm	POINCA	Set	Go
Profile Acceleratio	n 50	mm/s²	Repea		00101	i ai a	Point B	0	
Profile Deceleratio	n 50	mm/s²	-Repeat-	ne (ms)				Set	Go
Estimated Runtime	(s) <u>5.2</u>]	100	· · ·	Sto repea		Repea	ıt	

Application examples:

Users can observe the encoder feedback value through the monitor panel and evaluate if the encoder is assembled correctly. Or, after tuning, users can test motor's performance (via the motion panel) using the profile velocity/position/torque mode.

There are several motion functions, such as motor operating mode, S-curve motion, and absolute/relative position movements.

6.1 Monitor

Monitor					
Channel NO.	Source	Value	Channel NO.	Source	Value
Ch1	PosFdb ~	- 5869	Ch5	ChOff ~	
Ch2	PosErr ~	-1376	Ch6	ChOff ~	
Ch3	VelFdb ~	0	Ch7	ChOff ~	
Ch4	IqFdb ~	-0.02	Ch8	ChOff ~	

#	Option	Function			
1	ChOff	Channel off			
2	WvGnTheta	Reserved			
3	WvGnSwpTmr	Reserved			
4	WvGnFreq	Reserved			
5	WvGnAmp	Reserved			
6	WvGnOut	Reserved			
7	VDCFdb	Reserved			
8	laFdb & lbFdb	One of the three phase current from the motor			
0		la, lb, lc formed 360 $^\circ$			
9	Vin0 & Vin1	The voltage of analog input (See Will1-B			
		Installation Guide – Chapter 3.7).			
		Vin0 Analog AI-0-; it is used for analog			
		command.			
		Vin1 Analog ai-0+; reserved.			
10	RegenSat	Reserved			
11	lqRefSoft	Target current command, configured via UI			
12	IqRefAux	lq command from the controller			
13	ThetaElec	The phase angle on the magnet			
14	DdRef	Reserved			
15	DqRef	Reserved			
16	VdDmd	Reserved			
17	VqDmd	Reserved			

#	Option	Function				
10	lalaba 8 lbata	Map from the Ia, Ib, Ic model				
18	lalpha & Ibeta	lalpha=la , lbeta= (lb-lc)/√3				
19	ldFdb	Id feedback from motor				
20	ldRef	Id command to the motor				
21	lqFdb	Iq feedback from motor				
22	lqRef	Torque command to the motor				
23	VelUi	Reserved				
24	VelPlOut	Velocity PI Controller output				
25	VellqOut	Velocity Iq Output				
26	VelFFOut	Velocity feedforward Output				
27	PosUi	Reserved				
28	PoslUi	Reserved				
29	PosRefSoft	Target position command, configured via UI				
30	PosRefAux	Position command from the controller				
31	PosRefPrfl	Position command from profile path				
32	VelRefSoft	Target velocity command, configured via UI				
33	VelRefAux	The command from the controller				
34	VelRefPrfl	Velocity command from the profile path				
35	VelDmd	Velocity demand (before limited)				
36	VelRefStpMgr	Velocity reference step manager (after limited)				
37	PosDmd	Position demand (before limited)				
38	PosRefStpMgr	Position reference step manager (after				
		limited)				
39	PosFdb	Position feedback from motor				
40	PosErr	The difference form PosRef and PosFdb				
41	PosVelOut	Position PI controller output				
42	VelRef	Velocity reference				
43	VelFdb	Velocity feedback from motor				
44	VelErr	The difference form VelRef and VelFdb				
45	AccDmd	Acceleration demand				
46	AccFdb	Acceleration feedback				
47	AccErr	Acceleration error				

#	Option	Function				
48	Digital Input &	32-bit I/O code				
	Output					
49	MainISRLoad	Reserved				
50	MainISRLoadP	Reserved				
51	VDCRaw	Reserved				
52	la & lb Raw	The value of IaFdb & IbFdb analog signal				
53	Vin0 & Vin1 Raw	The ADC (Analog-to-Digital converter) value of Vin0				
		& Vin1 analog signal				
54	CtrlLoopCnt	Reserved				
55	CtrlLoopLevel	control level in position, velocity or current				
56	MachineState	Reserved				
57	ErrorCode	Chapter 10 Error code				
58	HallCode	Hall sensor signal				
		0: 1 st gain-set				
59	GainIndex	1: 2 nd gain-set				
		2: 3 rd gain-set				
60	PosTgtFIFOCn	Reserved				
61	STW	Reserved				
		0: off				
62	FrrMapSta	1: No table				
02	ErrMapSts	2: Waiting for Homing				
		3: Active				
63	EncSinFdb	Encoder sine feedback				
64	EncCosFdb	Encoder cosine feedback				
65	5VAnalog	Over-temperature protection 5V analog input				
66	EncSinRaw	The ADC value of encoder sine analog signal				
67	EncCosRaw	The ADC value of encoder cosine analog signal				
68	MainsFreq	AC input frequency in 0.1 Hz.				

6.2 Motion

_ Motion ——							
Control Mode	Profile Position	\sim	Motor ON	Run	Reverse	Zero	

a. Control Mode:

Choose a preferred control mode here.

b. Motor ON:

Click to enable motor-on.

c. Run:

Click to execute motion commands.

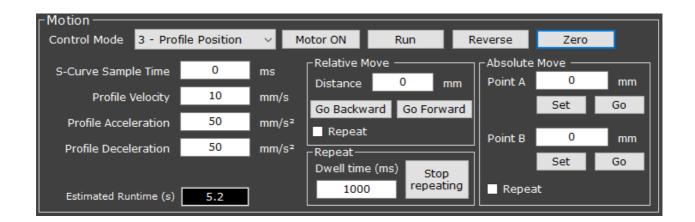
d. Reverse:

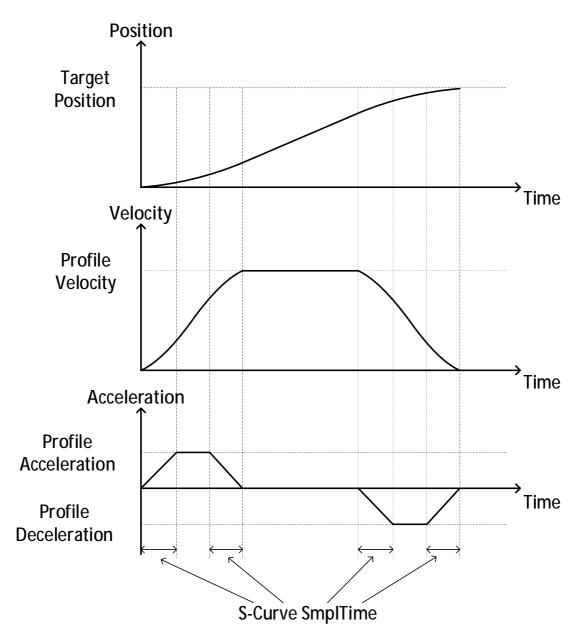
Reverse the value of target. (This function is only applicable when motor is on.)

e. Zero:

Make the motor's present position as position 0. (This function can only be enabled when motor is off.)

6.2.1 Direct Position & Velocity & Current


Motion	Motor ON	Run	Reverse	Zero	
Target Position 0	mm	TVGT T	Refere	20.0	
-Motion					
Motion Control Mode Direct Velocity	 Motor ON 	Run	Reverse	Zero	
Target Velocity 0	mm/s				
[−] Mition					
Control Mode Direct Torque	 Motor ON 	Run	Reverse	Zero	
Target Current 0	A IdRe	efSoft (D A		


Set the target position, velocity, or current, the driver will reach the goal as soon as possible.

a. IdRefSoft:

for cpc internal use only.

6.2.2 Profile Position

a. S-Curve SmplTime:

To smooth the acceleration slope to avoid too much vibration.

b. Profile Velocity:

The maximum speed during movement.

c. Profile Acceleration & Deceleration:

The maximum acceleration & deceleration during movements.

d. Estimated Runtime (s): The estimated time (in second) needed to reach target.

[Relative Move Panel]

e. Distance:

Sets the moving distance.

- f. Go Forward/Backward: Sets the moving direction.
- g. Repeat:

Tick to activate the "repeat" function.

[Absolute Move Panel]

h. Point A/B:

Manually key in the target position(s) here.

i. Set:

Automatically fills in motor's current position into the columns of Point A/B. (Namely, this function sets motor's current position as point A/B).

j. Go:

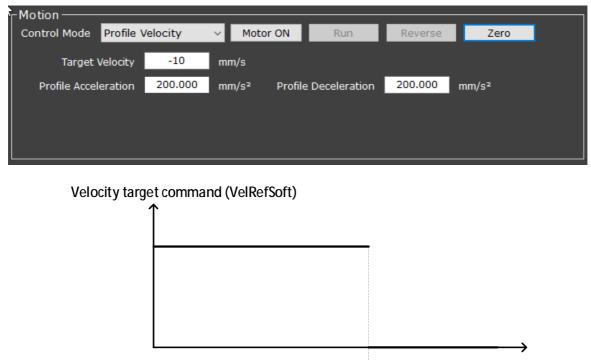
Click to make the motor move to point A/B.

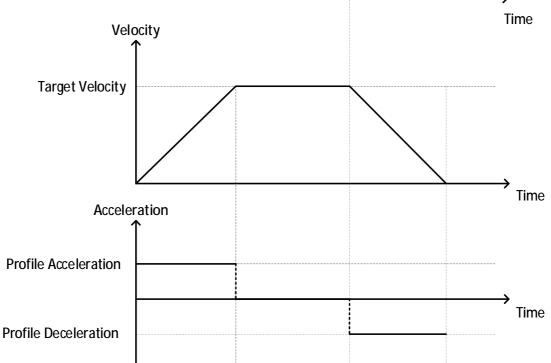
k. Repeat:

Tick to activate the "repeat" function.

[Repeat Panel]

I. Dwell time (ms):


Waits for this amount of time after the motor reaches target (i.e. point A/B or relative distance).


m. Stop repeating:

Cancels the command of repeating.

<u>Note</u>: Once you click this button, the motor won't stop until it reaches the designated target.

6.2.3 Profile Velocity

a. Target Velocity:

Key in the velocity command value here.

b. Profile Acceleration & Deceleration:

The maximum acceleration & deceleration during movements.

6.2.4 Profile Torque

Motion						
Control Mode Profile	Forque 🗸 🗸	Motor ON	Run	Reverse	Zero	
Target Current	-2	A Cur	rent Slope	0.000	A/s	
*						

a. Current Slope:

The rate of current increase, in amperes/sec.

Chapter 7 Homing

The operation of incremental encoder is based on calculating the increments (counts) between moves. However, for the operation of positioning the driver, an exact knowledge of the absolute position is normally required; we have to define a start point (Home) before working—which is called Homing—in order to know at what exact position the moves will be instead of knowing merely the relative moving distance.

There are several homing methods. Each method establishes:

- Homing signal (limit or home switch transition or encoder index pulse):
 - (1) Backward limit switch

(also called "negative limit switch" on the following pages)

(2) Forward limit switch

(also called "positive limit switch" on the following pages)

- (3) Home switch
- (4) Index pulse from an encoder.
- Direction of motion and, where appropriate, the relationship of the index L pulse to limit or home switches.

7.1 Setting

		Status	Index Pulse Negative Limit Swite	ch 😨	Fo S Bad	ch Status rward Switch Kward Switch Home Switch Set I/O
	<mark>15</mark> 0	mm/s	Home Speed(Index)	150	mm/s	
Home Speed(Switch)			· · · · · · · · · · · · · · · · · · ·	Nation 1	in the second second	
Home Speed(Switch) Home Offset	0	cnt	Home Acceleration	10	mm/s²	
	0 50	cnt % of Peak Cur.	Home Acceleration Hard Stop Period	10 250	mm/s² ms	_

There are several homing methods ranging from number #-12 to #35; the parameters to be set are the same, they are: speed, home offset, acceleration, hard stop current, and hard stop period.

a. Home Method / Start:

Selects a homing method from the list and click Start.

b. Status:

Shows the present status of the homing procedure.

c. Home Speed (Switch/Index):

The speed of moving to the switch / index.

d. Home Offset:

The offset counts from origin. Moreover, the offset value will be the position count(s) when homing is completed.

e. Home Acceleration:

The acceleration of homing.

- f. Hard Stop Current / Period:
 - (1) When the driver continues to output more than or equal to a certain percentage (%) of peak current for a period, the motor will be regarded as hitting a hard stop.
 - (2) <u>Note</u>: The method of using mechanical hard stop as references can be applied only under homing method -1, -2, -3, -4, and -5. If the hard stop conditions are triggered under other homing methods, homing will fail.
 - g. Transition to Profile Position Mode, on successful Homing operation: When ticked, once Homing procedure is completed, the system will automatically transit to Profile Position Mode.

Note:

- There is a same setting in Boot Sequence (see chapter 4.8) which links with the setting (e) here. Changing the setting (e) in Homing section will alter the same setting in Boot Sequence. Vice versa.
- On condition that in the Boot Sequence section the "Homing" step* is set to be performed, a warning** will show up when users change the setting (e) in Homing section.

*:	✓ Homing
	-5 ~
**:	Warning
	Changing this setting here will alter the same setting in Boot Sequence section.
	ОК

h. Move to new zero position, on successful Homing operation:

When ticked, once Homing procedure is completed and system has switched to Profile Position mode, move to the newly-defined zero position. This function is available only when the *"Transition to Profile Position Mode, on successful Homing operation"* option is ticked (activated).

Homing error trigger fault event (error code 0x8613)

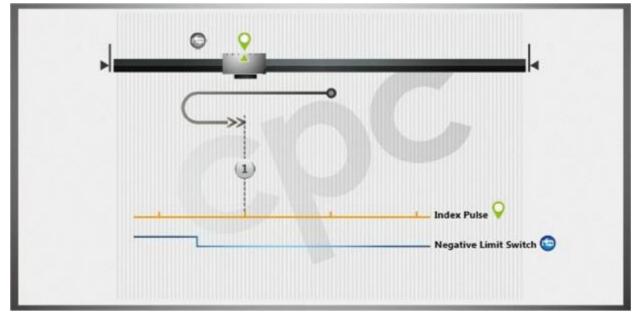
- Ticked: Triggers a fault event (error code "0x8613") when there is a homing error.
- Unticked: No fault event will be triggered when there is a homing error.

j. Switch status:

Displays the status of Forward/Backward/Home switches. (Green: on; Red: off; Grey: undefined).

k. Set I/O:

A quick link to the Input panel.

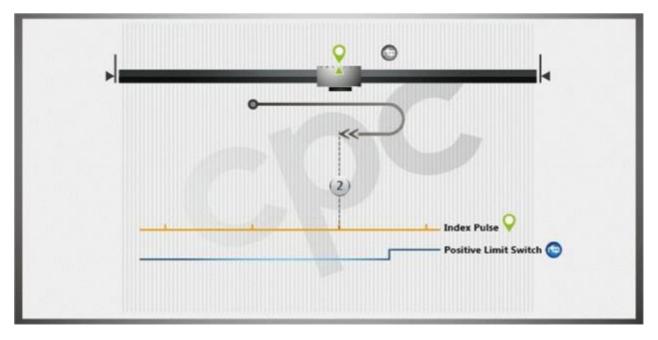

7.2 Homing Method

7.2.1 CiA 402 Standard Homing Method

By Limit Switch and Index Pulse

Method 1:

Home on the first index pulse after departing from the negative limit switch.

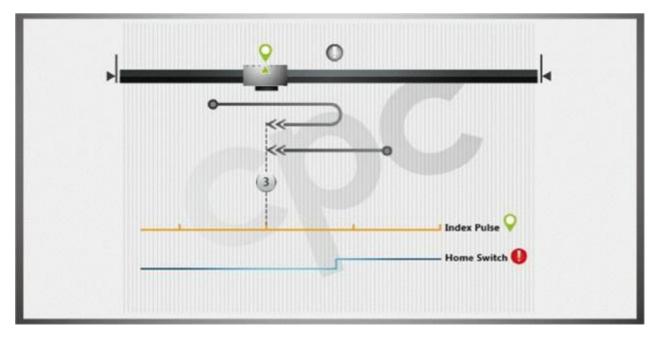


Homing process:

Start with the negative motion unconditionally to the rising edge of the negative limit switch; then move in positive direction until the first index pulse is found.

Method 2:

Home on the first index pulse after departing from the positive limit switch.

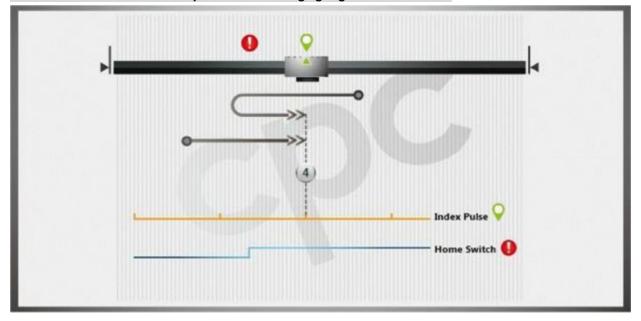


Homing process:

Start with the positive direction unconditionally to the rising edge of the positive limit switch; then move in negative direction until the first index pulse is found.

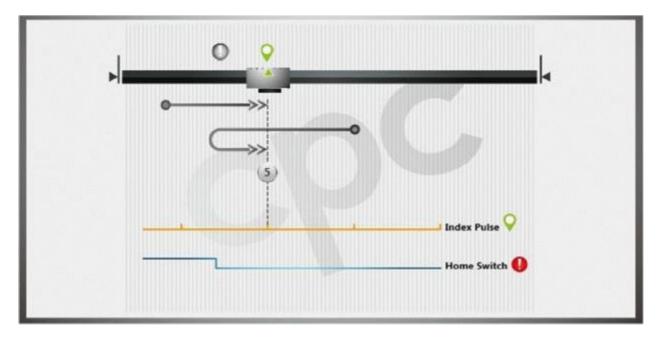
Method 3:

Home on first index pulse after departing from home switch.



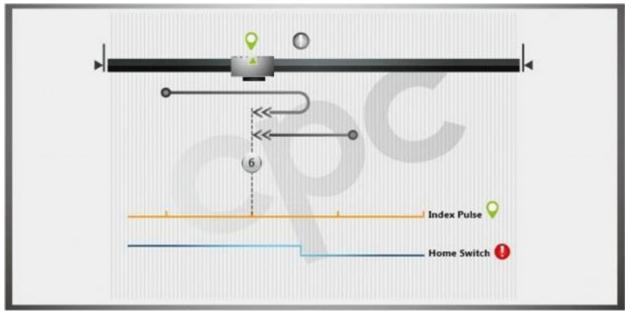
- If the home switch is inactive, start with the positive direction to the rising edge of the home switch; then move in negative direction until the first index pulse is found.
- If the home switch is active, start with the negative direction until the first index pulse is found.

By Home Switch and Index Pulse


Method 4:

Home on the first index pulse after engaging home switch.

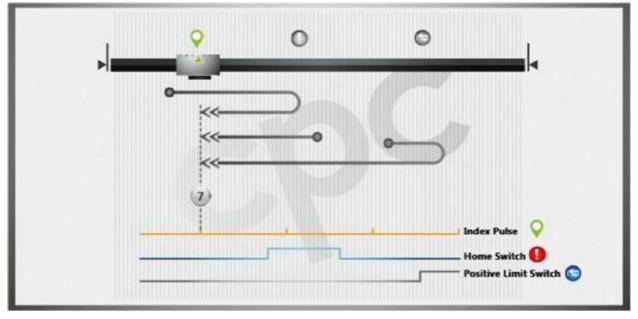
- If the home switch is active, start with the negative direction to the falling edge of the home switch; then move in positive direction until the first index pulse is found.
- If the home switch is inactive, start with the positive direction until the home switch is engaged, then keep moving in positive direction until the first index pulse is found.


Method 5:

Home on the first index pulse after departing from home switch.

- If the home switch is active, start with the positive direction to the falling edge of the home switch; then keep moving in positive direction and home on the next index pulse found.
- If the home switch is inactive, start with the negative direction to the rising edge of the home switch; then move in positive direction until the first index pulse is found.

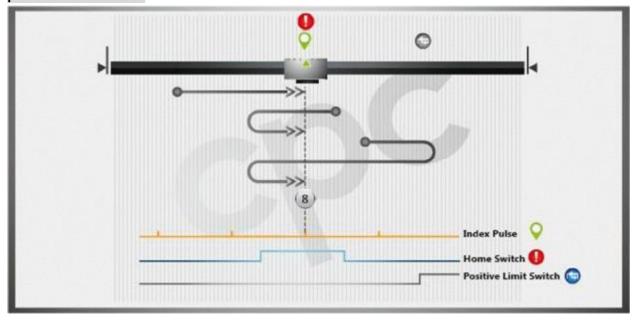
Method 6:


Home on the first index pulse after engaging home switch.

- If the home switch is active, start with the positive direction to the falling edge of the home switch; then move in negative direction until the first index pulse is found.
- If the home switch is inactive, start with the negative direction to the rising edge of the home switch; then keep moving in negative direction until the first index pulse is found.

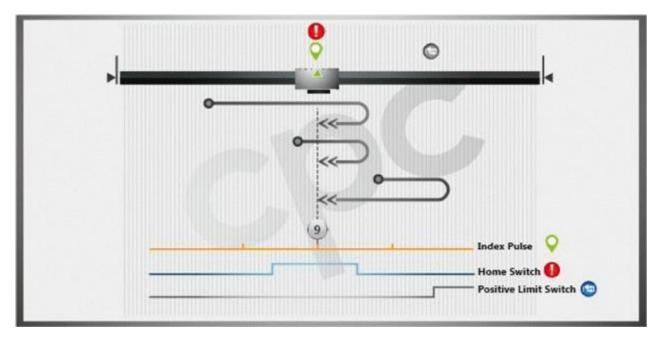
By Home Switch, Index Pulse, and Limit Switch

Method 7:


Home on the first index pulse after departing from home switch while moving in negative direction.

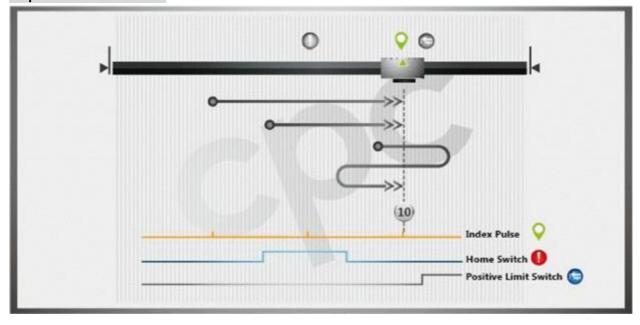
- If the home switch is inactive, start with the positive motion. If the home switch is engaged, move in negative direction until the home switch is disengaged, then find the first index pulse.
- If the home switch is active, start with the negative direction until the home switch is disengaged, then continue moving in negative direction until the first index pulse is found.
- If the home switch is inactive, start with the positive motion. If the positive limit switch is engaged, move in negative direction until the home switch is engaged and then disengaged, then move in negative direction until the first index pulse is found.

Method 8:


Home on the first index pulse after engaging home switch while moving in positive direction.

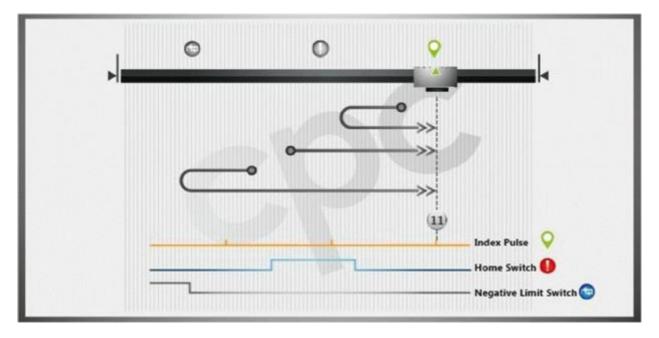
- If the home switch is inactive, start with positive direction until the home switch is met, then keep moving in positive direction until the first index pulse is found.
- If the home switch is active, start with negative direction until home switch is disengaged, then move in positive direction until home switch is engaged, and then find the first index pulse.
- If the home switch is inactive, start with positive direction; when the positive limit switch is engaged, move in negative direction until the home switch is engaged and disengaged, then move in positive direction until the first index pulse is found.

Method 9:


Home on the first index pulse after engaging home switch while moving in negative direction.

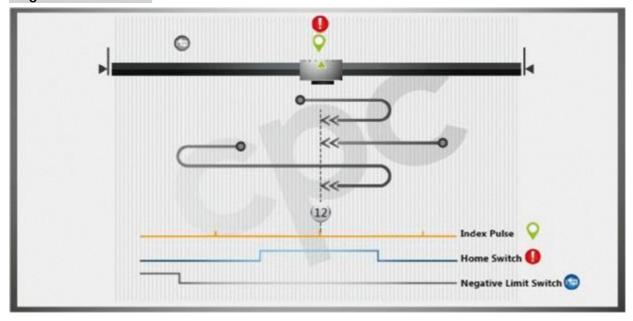
- Start with positive direction unconditionally. If home switch is engaged, keep moving in positive direction until home switch is disengaged, then move in negative direction until home switch is engaged, and then find the first index pulse.
- Start with positive direction unconditionally. If home switch is disengaged, move in negative direction until home switch is engaged, then find the first index.
- Start with the positive motion unconditionally. If the positive limit switch is engaged, move in negative direction until home switch is engaged, then find the first index pulse.

Method 10:


Home on the first index pulse after departing from home switch while moving in positive direction.

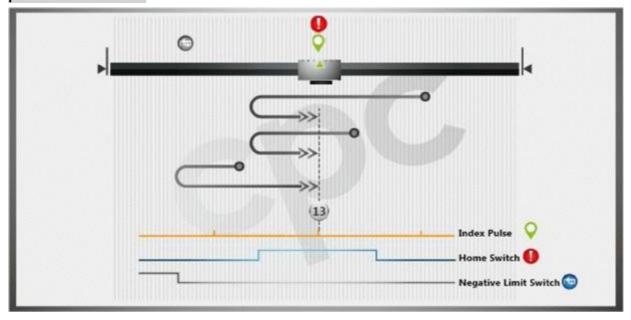
- Start with positive direction unconditionally. If home switch is then engaged, keeping moving in positive direction until home switch is disengaged, then find the first index pulse.
- Start with positive direction unconditionally. If home switch is active and then disengaged, keep moving in positive direction until the first index pulse is found.
- Start with position direction unconditionally. If positive limit switch is then engaged, move in negative direction. If home switch is engaged, move in positive direction until home switch is disengaged, then find the first index pulse.

Method 11:


Home on the first index pulse after departing from home switch while moving in positive direction.

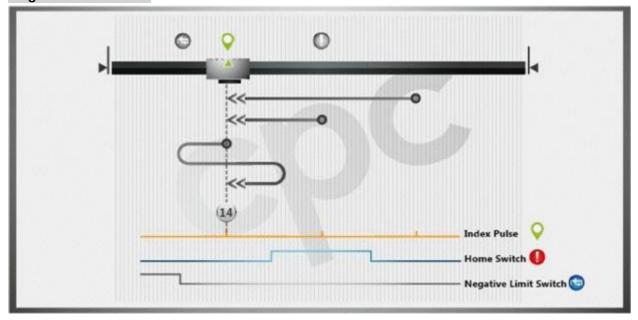
- If home switch is inactive, move in negative direction. If home switch is then engaged, move in positive direction until home switch is disengaged, then find the first index pulse.
- If home switch is active, move in positive direction until home switch is disengaged, continue moving in positive direction until the first index pulse is found.
- If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction until home switch is engaged, continue moving in positive direction until home switch is disengaged, then find the first index pulse.

Method 12:


Home on the first index pulse after engaging home switch while moving in negative direction.

- If home switch is active, move in positive direction. If home switch is then disengaged, move in negative direction until home switch is engaged, then find the first index pulse.
- If home switch is inactive, move in negative direction until home switch is engaged, then, continue moving in negative direction until the first index pulse is found.
- If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction until home switch is engaged. If home switch is then disengaged, move in negative direction until home switch is engaged, then find the first index pulse.

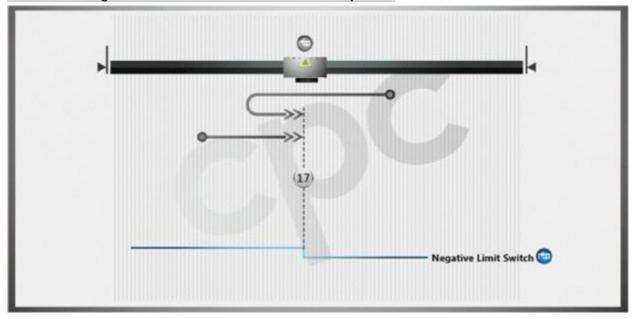
Method 13:


Home on the first index pulse after engaging home switch while moving in positive direction.

- Start with negative motion unconditionally. If home switch is then engaged, continue moving in negative direction. If home switch is then disengaged, move in positive direction until home switch is engaged, then find the first index pulse.
- Start with negative motion unconditionally. If home switch is then disengaged, move in positive direction until home switch is engaged, then find the first index pulse.
- Start with negative motion unconditionally. If negative limit switch is then engaged, move in positive direction until home switch is engaged, then find the first index pulse.

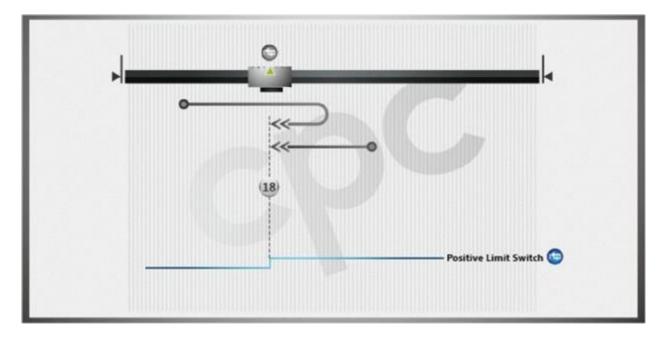
Method 14:

Home on the first index pulse after departing home switch while moving in negative direction.


- Start with negative direction unconditionally. If home switch is inactive, move in negative direction. If home switch is then engaged, keep moving in negative direction until home switch is disengaged, then, find the first index pulse.
- Start with negative direction unconditionally. If home switch is then disengaged, keep moving in negative direction until the first index pulse is found.
- Start with negative direction unconditionally. If negative limit switch is then engaged, move in positive direction. If home switch is then engaged, move in negative direction until home switch is disengaged, then find the first index pulse.

Method 15 to 16: Reserved.

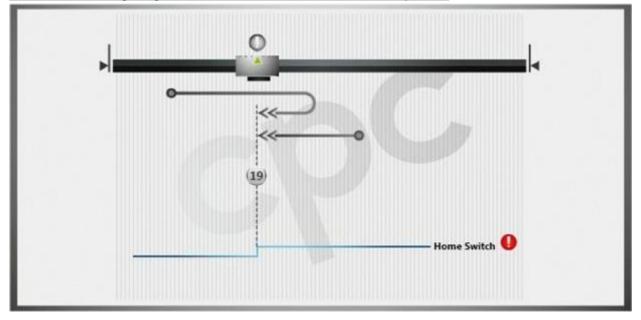
By Limit Switch


Method 17:

Home on negative limit switch without index pulse.

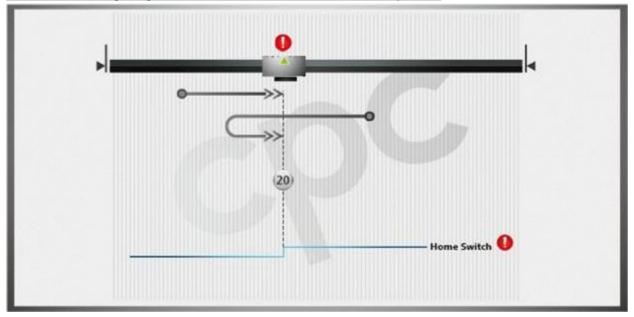
- If negative limit switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction to locate the falling edge of the negative limit switch.
- If negative limit switch is active, move in positive direction to locate the falling edge of the negative limit switch

Method 18: Home on positive limit switch without index pulse.



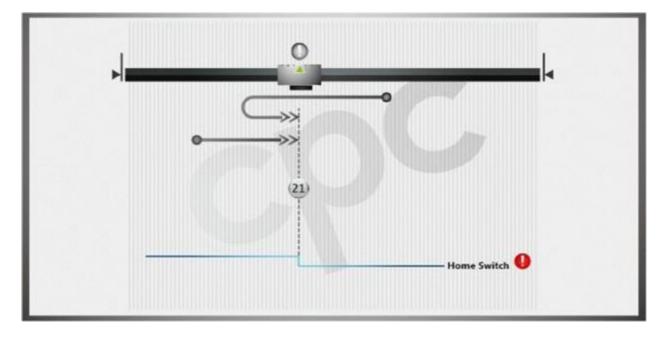
- If positive limit switch is inactive, move in positive direction. If positive limit switch is then engaged, move in negative direction to locate the falling edge of the positive limit switch.
- If positive limit switch is active, move in negative direction to locate the falling edge of the positive limit switch

By rising/falling edge of Home Switch

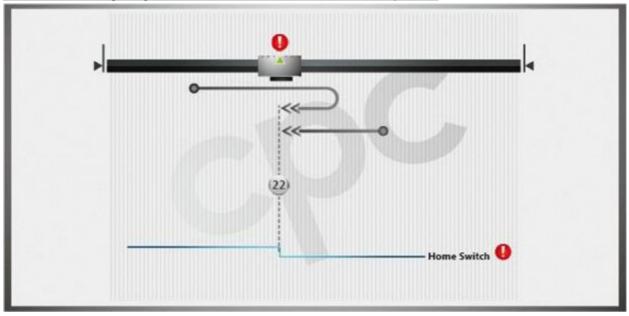

Method 19:

Home on falling edge of home switch without index pulse.

- If home switch is inactive, move in positive direction. If home switch is then engaged, move in negative direction to locate the falling edge of the home switch.
- If home switch is active, move in negative direction to locate the falling edge of the home switch.


Method 20:

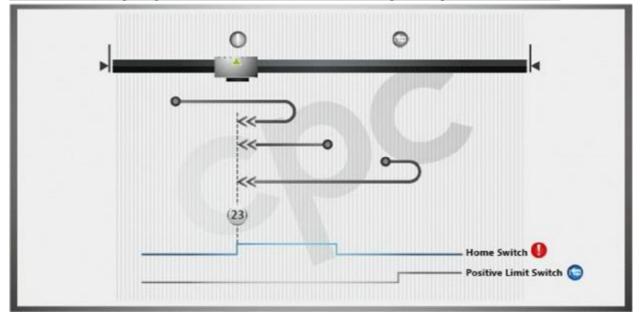
Home on rising edge of home switch without index pulse.


- If home switch is inactive, move to rising edge of the home switch in positive direction.
- If home switch is active, move in negative direction. If home switch is then disengaged, move to rising edge of the home switch in positive direction.

Method 21: Home on falling edge of home switch without index pulse.

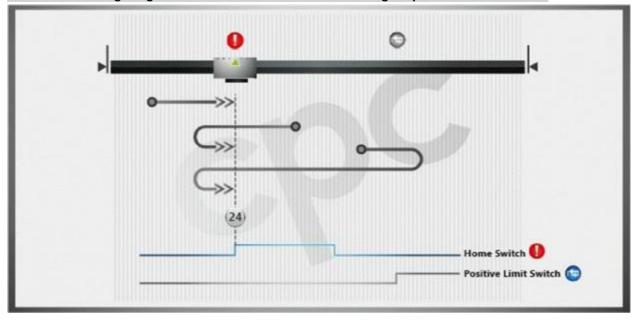
- If home switch is inactive, move in negative direction. If home switch is then engaged, move to falling edge of the home switch in positive direction.
- If home switch is active, move to falling edge of the home switch in positive direction.

Method 22:


Home on rising edge of home switch without index pulse.

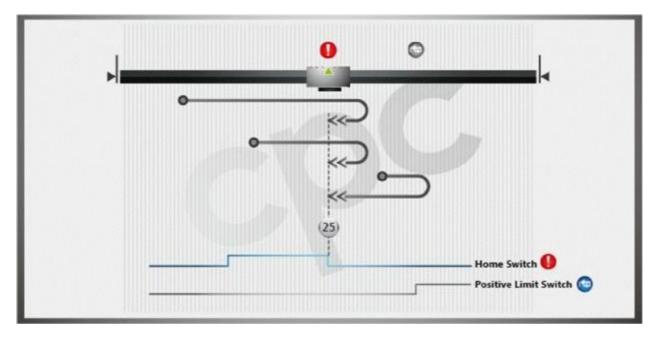
- If home switch is active, move in positive direction. If home switch is then disengaged, move to rising edge of the home switch in negative direction.
- If home switch is inactive, move to rising edge of the home switch in negative direction.

By Home Switch and Limit Switch


Method 23:

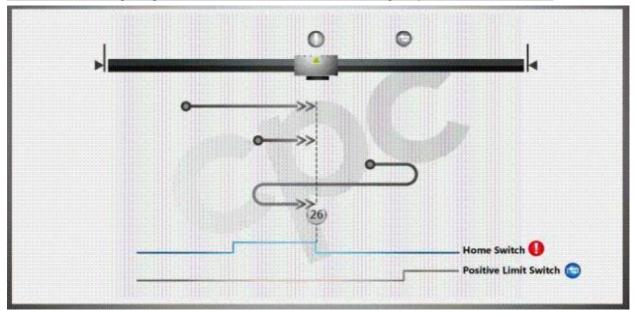
Home on falling edge of home switch while moving in negative direction.

- If home switch is inactive, move in positive direction. If home switch is then engaged, move to falling edge of the home switch in negative direction.
- If home switch is active, move to falling edge of the home switch in negative direction.
- If home switch is inactive, move in positive direction. If positive limit switch is then engaged, move in negative direction. If home switch is then engaged, keeping moving to locate the falling edge of the home switch.


Method 24:

Home on rising edge of home switch while moving in positive direction.

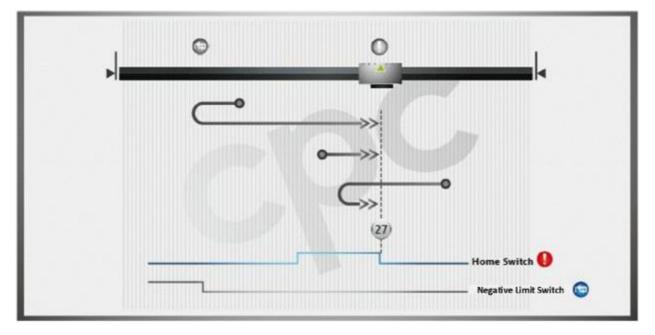
- If home switch is inactive, move to rising edge of the home switch in positive direction.
- If home switch is active, move in negative direction. If home switch is then disengaged, move to rising edge of the home switch in positive direction.
- If home switch is inactive, move in positive direction. If positive limit switch is then engaged, move in negative direction until home switch is engaged, continue moving in negative direction. If home switch is then disengaged, then move to rising edge of the home switch in positive direction.


Method 25:

Home on rising edge of home switch while moving in negative direction.

- If home switch is inactive, move in positive direction. If home switch is then engaged, continue moving in positive direction. If home switch is then disengaged, move to rising edge of the home switch in negative direction.
- If home switch is active, move in positive direction. If home switch is then disengaged, move to rising edge of the home switch in negative direction.
- If home switch is inactive, move in positive direction. If positive limit switch is then engaged, move to rising edge of the home switch in negative direction.

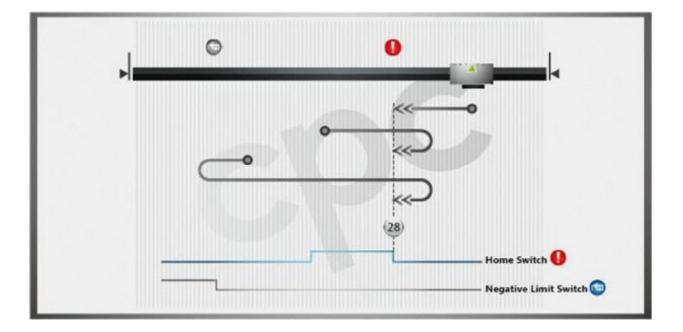
Method 26:



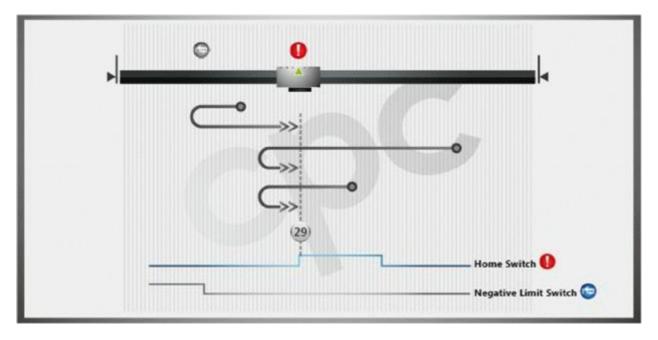
Home on falling edge of home switch while moving in positive direction.

- If home switch is inactive, move in positive direction. If home switch is then engaged, move to falling edge of the home switch in positive direction.
- If home switch is active, move to falling edge of the home switch in positive direction.
- If home switch is inactive, move in positive direction. If positive limit switch is then engaged, move in negative direction. If home switch is then engaged, move to falling edge of the home switch in positive direction.

Method 27:


Home on falling edge of home switch while moving in positive direction.

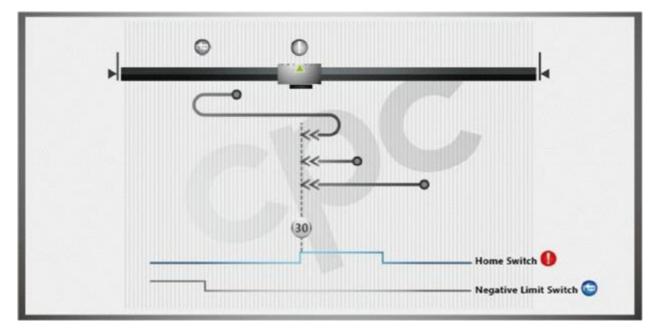
- If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction. If home switch is then engaged, move to falling edge of the home switch in positive direction.
- If home switch is active, move to falling edge of the home switch in positive direction.
- If home switch is inactive, move in negative direction. If home switch is then engaged, move to falling edge of the home switch in positive direction.


Method 28:

Home on rising edge of home switch while moving in negative direction.

- If home switch is inactive, move to rising edge of the home switch in negative direction.
- If home switch is active, move in positive direction. If home switch is then disengaged, move to rising edge of the home switch in negative direction.
- If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction until home switch is engaged, continue moving in positive direction. If home switch is then disengaged, move to rising edge of the home switch in negative direction.

Method 29:



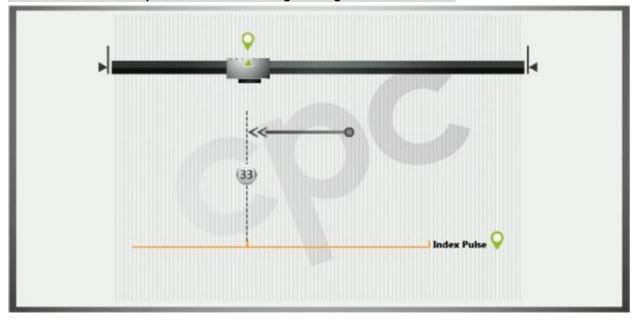
Home on rising edge of home switch while moving in positive direction.

- If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move to rising edge of the home switch in positive direction.
- If home switch is inactive, move in negative direction until home switch is engaged, continue moving in negative direction. If home switch is then disengaged, move to rising edge of the home switch in positive direction.
- If home switch is active, move in negative direction. If home switch is then disengaged, move to rising edge of the home switch in positive direction.

Method 30:

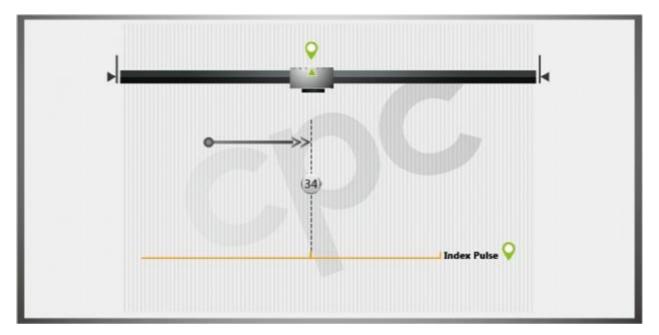
Home on falling edge of home switch while moving in negative direction.

Homing process:


- If home switch is inactive, move in negative direction. If negative limit switch is then engaged, move in positive direction. If home switch is then engaged, move to falling edge of the home switch in negative direction.
- If home switch is active, move to the falling edge of the home switch in negative direction.
- If home switch is inactive, move in negative direction. If home switch is then engaged, move to falling edge of the home switch in negative direction.

Method 31 to 32: Reserved.

By First Pulse


Method 33:

Home on the first pulse while moving in negative direction.

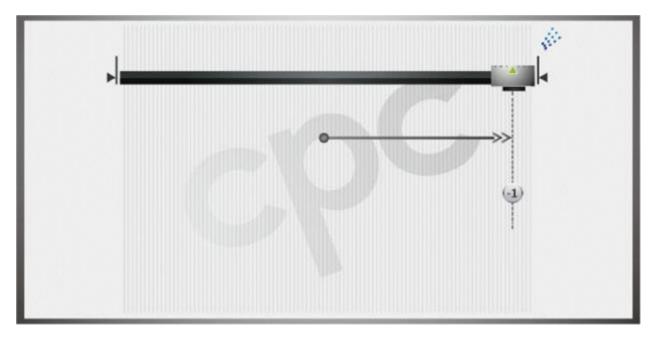
Method 34:

Home on the first pulse while moving in positive direction.

By Current Position

Method 35: Home on the current position.

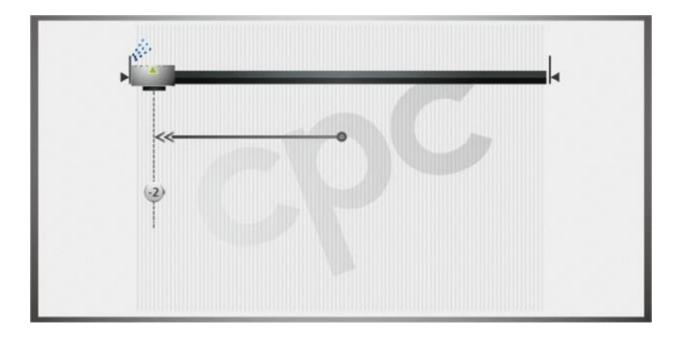
*<u>Note</u> Method 37 = Method 35



7.2.2 cpc-defined Homing Method

By Hard Stop

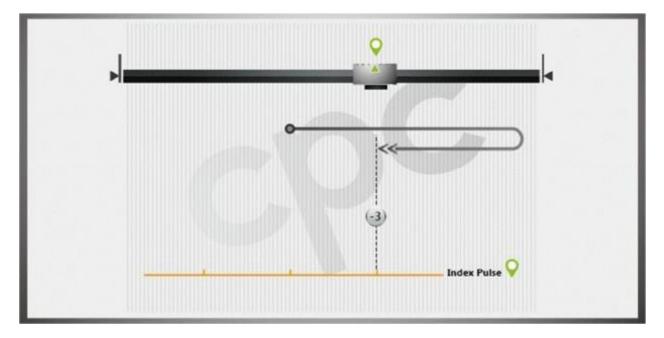
Method -1:


Home on the point of the positive hard stop.

Homing process:

Start with positive motion unconditionally until the positive hard stop is found.

Method -2: Home on the point of the negative hard stop.

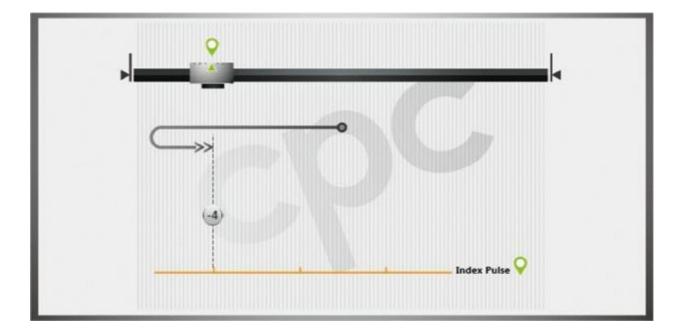

Homing process:

Start with negative motion unconditionally until the negative hard stop is found.

By Hard Stop and Index

Method -3:

Home on the first index pulse after touching the positive hard stop.

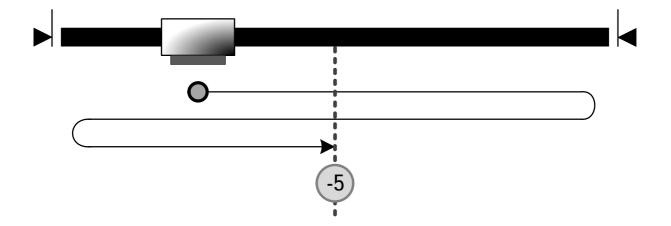


Homing process:

Start with positive direction unconditionally. After touching the positive hard stop, move in negative direction until the first index is found.

Method -4:

Home on the first index pulse after touching the negative hard stop.

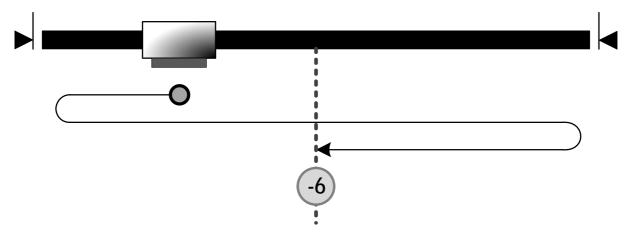

Homing process:

Start with negative direction unconditionally. After touching the negative hard stop, move in positive direction until the first index is located.

By the middle of Hard Stop

Method -5:

Find middle between forward/backward hard stop, initial direction forward.

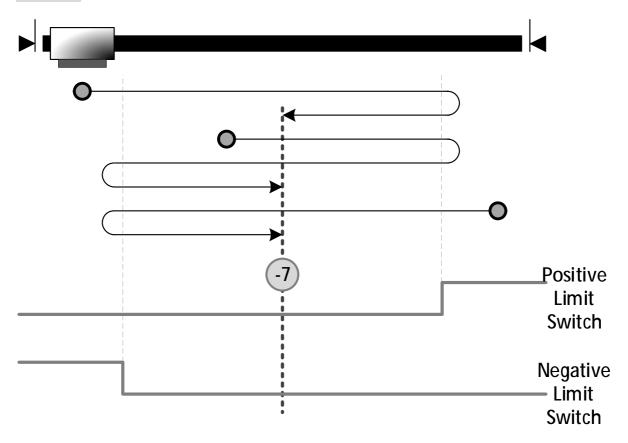


Homing process:

Start with positive direction unconditionally. After touching the positive hard stop, move in negative direction until touching the negative hard stop, and then home on the middle of the two hard stops (found during homing).

Method -6:

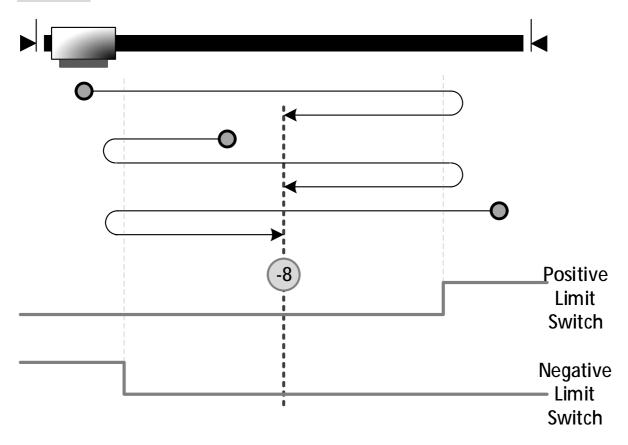
Find middle between forward/backward hard stop, initial direction backward.


Homing process:

Start with negative direction unconditionally. After touching the negative hard stop, move in positive direction until touching the negative hard stop, and then home on the middle of the two hard stops (found during homing).

By the middle of Limit Switch

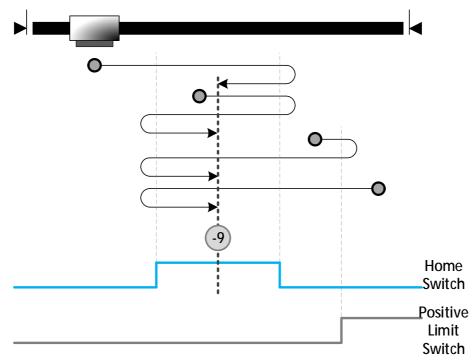
Method -7:


Find middle between forward/backward limit switch falling edge, initial direction forward.

- If negative limit switch is active, start with positive direction until the positive limit switch is engaged; then, move in negative direction to find the middle of both switches.
- If negative limit switch is inactive, start with positive direction until the positive limit switch is engaged and then move in negative direction. If negative limit switch is engaged, move in positive direction until the middle of both switches is found.
- If the positive limit switch is active, start with negative direction until the negative limit switch is engaged; then, move in positive direction to find the middle of both switches.

Method -8:

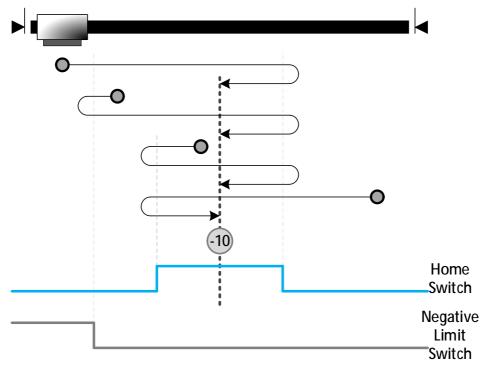
Find middle between forward/backward limit switch falling edge, initial direction backward



- If negative limit switch is active, start with positive direction until the positive limit switch is engaged; then, move in negative direction to find the middle of both switches.
- If negative limit switch is inactive, start with negative direction until the negative limit switch is engaged and then move in positive direction. If the positive limit switch is then engaged, move in negative direction until the middle of both switches is found.
- If the positive limit switch is active, start with negative direction until the negative limit switch is engaged; then, move in positive direction to find the middle of both switches.

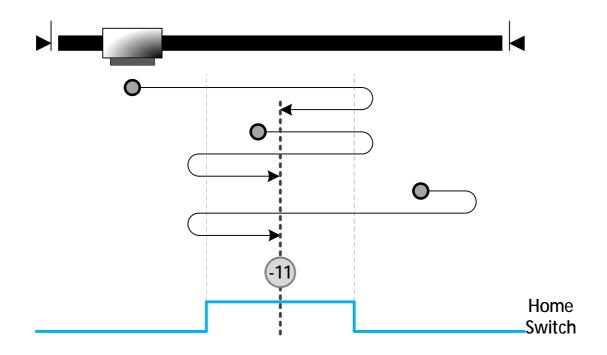
By the middle of Home Switch

Method -9:


Find middle of home switch falling edge, initial direction forward, allow limit switch.

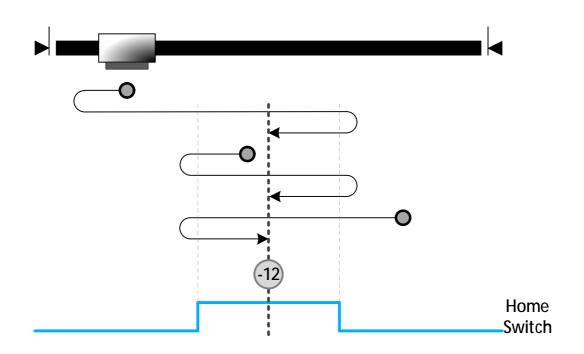
- If the home switch is inactive, start with positive direction until the home switch is engaged and disengaged, then move in negative direction until the middle of home switch is found.
- If the home switch is active, move in positive direction until the home switch is disengaged, then move in negative direction until the home switch is engaged and then disengaged. Reverse to move in positive direction and find the middle of home switch.
- If the home switch is inactive, move in positive direction. If the positive limit switch is then engaged, move in negative direction until the falling edge of the home switch is engaged, then, move in positive direction until the middle of the home switch is found.
- If positive limit switch is active, move in negative direction until the falling edge of home switch is met, then move in positive direction and find the middle of home switch.

Method -10:


Find middle of home switch falling edge, initial direction backward, allow limit switch

- If the negative limit switch is active, move in positive direction until the home switch is engaged and then disengaged. Then move in negative direction until the middle of the home switch is found.
- If the home switch is inactive, start with negative direction. If the negative limit switch is then engaged, move in right direction until the falling edge of the home switch is met. Then move in negative direction to find the middle of the home switch.
- If home switch is active, move in negative direction. If the home switch is then disengaged, move in positive direction until the home switch is engaged and disengaged. Then, move in negative direction until the home switch is engaged again and find the middle of home switch.
- If the home switch is inactive, move in negative direction until the falling edge of home switch. If the home switch is then disengaged, move in positive direction until the middle of the home switch is found.

Method -11:


Find middle of home switch falling edge, initial direction forward, allow hard stop.

- Start with positive direction unconditionally. If home switch is inactive, keep going (and then if hard stop is met, reverse firstly) until meeting the rising and falling edge of the home switch, then reverse again to locate the middle of home switch.
- Start with positive direction unconditionally. If home switch is active, seek the positive side of home switch, then move in negative direction to meet the negative side of home switch, then reverse to find the middle of home switch.

Method -12:

Find middle of home switch falling edge, initial direction backward, allow hard stop.

- Start with negative direction unconditionally. If home switch is inactive, keep going (and then if hard stop is met, reverse firstly) until meeting the rising and falling edge of the home switch, then reverse again to locate the middle of home switch.
- Start with negative direction unconditionally. If home switch is active, go meet the negative side of home switch, then move in positive direction to meet the positive side of home switch, then reverse to find the middle of home switch.

7.3 Homing Error Code

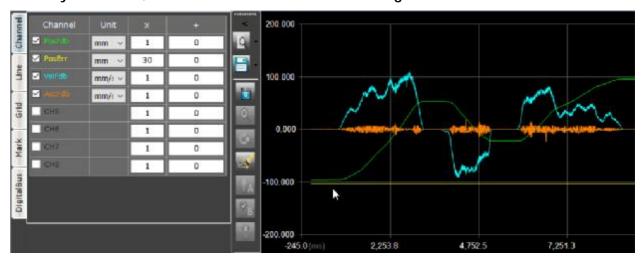
Error	Description
code	
1	No error
2	Invalid FSM state
3	Invalid HmCfgBits
4	No valid homing method set
5	Wrong Home Switch edge encountered
6	Direction mismatch for motor motion when Home Switch is searched
7	Direction mismatch for motor motion when index is searched
8	Encountered overlapping limit switch
9	Unexpected encounter of Forward Limit Switch
10	Unexpected 2 nd encounter of Forward Limit Switch
11	Unexpected encounter of Backward Limit Switch
12	Unexpected 2 nd encounter of Backward Limit Switch
13	Unexpected encounter of Forward Hard Stop
14	Unexpected 2 nd encounter of Forward Hard Stop
15	Unexpected encounter of Backward Hard Stop
16	Unexpected 2 nd encounter of Backward Hard Stop
17	We have traveled from one limit switch to another without satisfying
	homing condition
18	We have traveled from one Hard Stop to another without satisfying
	homing condition

Chapter 8 Scope

8.1 Intro and Interface Tour

The function of Scope is similar to that of an oscilloscope.

The Scope interface has 4 main panels:


- 1. Window Control Panel on the top of the interface.
- 2. [Scope Setting|Trial Run|Gain|Script] Panel on the bottom of the interface, it's the major configuration panel.
- 3. Display Panel on the right, for viewing results.
- 4. Further Setting Panel on the left, finer settings for the display panel.

Scope - [Plot 1]		Wind	do	wG	ontre	ol	Panel					- 0	× - 5 ×
2 🗯	Scope Status	1101	wiving Da	itti Ca	ompleto									
Channel Cha	nnel Unit II mm/t v	× 1	+ D		<u>o</u>	3.000	l							-1
	v ~	1	0			2.000 -								
Play CHS		1 1 1	0											
A Mark		1	0			1.000		Display Panel						
DigitalBus				1		0.000 -								i
Fur	ther Set	ting P	anel	j		-1.000	(ms)		65	5	129.0	192.5		256.0
Scope Setti	ng Trial Run	Gain So	ipt	181	-	Lettin		and the	16	in (Serips) i	Name		DroCot	•
Start Record	Scope Type Sample Rate	Normal 500	✓ ✓ Hz	Ch 1	Sol VelFdb	urce Y	Ch S	Source	~	Trigger Type Trigger Channel	RisingEdge VelFdb	v	Custom	v
	Sample Count	128	~	2	VIn0	Ŷ	6	choff	v	PreTrigger			Save To Co	ustom
Repeat	Sample Time	256	ms	3	Choff Choff	22	7 8	choff choff	~ ~	Trigger Level 1	1		Defau	
Driver ON	Motor Status	witch On Dis	able En	TOF C	-	www.dh	eltek	and the second second						Log

You can use Scope to monitor several variables by setting them as the channels' data source (see chapter 6.1). Also, you can configure the data unit and graph details. Moreover, Scope allows you to record data and alter the data presentation way.

After the recording and graph drawing is completed, you can observe the ripple and resonance frequency via the drawn plot.

Take the picture below for example, you'll find position feedback, position error, velocity feedback, and acceleration feedback during a movement.

As for generating a movement(s), please refer to <u>chapter 6</u>. Trial run \odot and <u>chapter</u> <u>9</u>. Script \square .

The recorded data can be saved in txt. format (text file) and the plot in .png format.

8.2 Window Control Panel

	• 💕	Scope Status: Stop
a.	×	Plot:
	[Move the cursor onto the downward arrow.
	I	Click "New Plot" to create up to 4 monitoring windows.
		New Plot Plot 1
		You can select which window(s) to be shown on the Display Panel by ticking the title of the preferred window(s).
b.		Window: Close All Window Horizontal Alignment Vertical Alignment

Select to align windows horizontally or vertically, or close them all. See images below.

(Horizontal Alignment)

Charmed					3E+0				
5		1	.0.		1E+0				
- CrGam		1	0		BE+0				
5		1	0	김분	BE+0				
1		1	d		BE+0.				
5		- 4	0	1	-1,000.0 (mm)	-590.0	0.0	500.0	1,000.0
63		- A.	0			-590.0	.01	500.0	
63	UNE		•		11.10	500.0	0.8.	500.0	
63	ue	- К - Х	+ 0			100	08	500 0	
Channel 5 cm	URE	к 1 1	•		11.10	592.1	10	500 0	
Churned 6	UNE	ь 1. 1.	+ 0		1E+0 0E+0 IE+0	108		300 0	
40	UNE	5 1 1 1 1 1	0 0		1E+0 0E+0 IE+0	301			1,000

(Vertical Alignment)

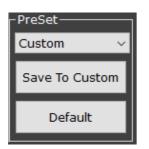
c. Scope Status:

Indicates the status of data processing, e.g., Waiting Trigger, Recording, Receiving Data, and Receiving Data Complete.

2		South Status		a ann a b	a a l ci	-	4 1		-				
Mark Grid Live Chemic	Oraci Coll Dat Dat Dat Dat Dat	al Lod	3 4 1 1 1	0 0 0 0 0 0		역 의 의 해 한 전	1.001		*				
Digitalities Ma	(CHE)		1	0			-1 000						
Gospe	. Gettin	Balfun	Get 3	Digit 1				5		64.4	129.3	182.1	261
Shi Resi	art ord	Scope Type Licepte Aate	Normal 2000	- 40	01 1	ficu iskef	193	0h 3	Geurce.	Thoser Tupe Trigger Churriel	Dreaterthan FosFdb	1	Watet Ceittom
• **		Sample Court Sociale Tree	812 255	-	2	Chart Chart Chart		8	cholt -	Pvdhigger Thgger Level 4	a		Save to Cuitom Osar

8.3 [Scope Setting | Trial Run | Gain | Script] Panel

Scott Soll	re Trai Rin	Sam Ba	npt								Ţ
Start	Scope Type	Normal	~	ch	Source	Ch	Source	lri	igger lype	GreaterThan 💎	-PreSel
Record	Sample Rate	1000	 ↓ IIZ 	1	PosRef5tpM -	/ 5	Vel-db	 Those 	r Channel	PosHdb 🔗	Custom V
	Sample Count	512	v	2	PosEdb 🔷	- 6	IqRef	U I	Pretrigger	· · · · · · ·	Save to Custom
Bepeat	Sample Time	512	ms	3	Posen	/ 7	tq+db	 Trigg 	jer Level 1	n	Catault
				4	VelRefPifl	× 8	VDCFdb	v			Default


8.3.1 Scope Setting Tab

Start	Scope Type	Normal		ch	Source	ch	Source		Irigger Type	GreaterThan 🗠	-Preset
Record	Sample Rate	1000 ×	, IIz	1	PosRefStpM	v 5	WelEdb	×	Togger Channel	PosEdb 😪	Custom ~
	Sample Count	512 ×	-	2	PosFdb 1	× 6	IgRel	v	Pretrigger		Save to Custom
Repeat	Sample time	512	ms	Э	PosEm	v 7	IqFdb	×	Trigger Level 1	0	
					velkeftrif	× 8	VDCHdb	v			Default

Like using an oscilloscope, users need to set up first the scope type, rate, sample count, and the data (channel number and the source).

Note: See the channel data source in <u>chapter 6.1 Monitor</u>.

8.3.1.1 Preset

We cpc provide 2 factory presets (Profile Position and Profile Velocity) and 1 customized preset.

- You can click "Default" to clear all settings then configure parameters as you wish.
- In Custom mode, click "Save To Custom" Save To Custom to save your preferred settings.

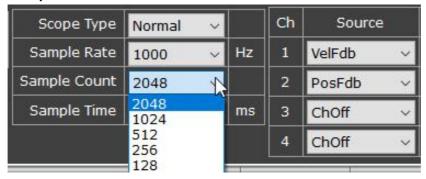
8.3.1.2 Recoding Setting

Start	Scope Type	Normal 🗸 🗸	
Record	Sample Rate	1000 ~	Hz
	Sample Count	4096 ~	
Repeat	Sample Time	4096	ms

a. Scope Type:

Normal or Rolling; see chapter 8.3.1.3.

b. Sample Rate:


The frequency (Hz) of retrieving the data.

c. Sample Count:

The maximum data counts for each channel.

Note:

When using the "Normal" Scope Type, the system's maximum total data count is 4096 (counts). Hence, if there are 2 channels set, the maximum sample count for each channel shown on the list will become 2048 counts.

d. Sample Time:

The time duration needed for recording (based on the configuration of sample rate and sample count).

Sample Time (ms) = Sample Count ÷ Sample Rate (Hz) x 1000.

e. Start Record:

Click to start recording data.

When using the "Normal" Scope Type, if there are triggering conditions set, click this button; next, when conditions are satisfied the system will automatically start recording.

Note:

Any change of data source will need to be activated by clicking the "Start Record" button.

8.3.1.3 Normal/Rolling and Trigger Setting

Start	Scope Type	Normal	~		Ch	Source	Ch	Source	Trigger Type	InsideRange v
Record	Sample Rate	1000	\sim	Hz	1	PosRefStpM ~	5	VelFdb ~	Trigger Channel	VelRefPrfl 🗸 🗸 🗸
	Sample Count	512	~		2	PosFdb ~	6	IqRef v	PreTrigger	
Repeat	Sample Time	512		ms	3	PosErr ~	7	IqFdb 🗸 🗸	Trigger Level 1	1
					4	VelRefPrfl ~	8	VDCFdb ~	Trigger Level 2	0

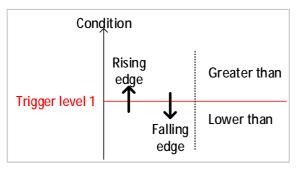
There are 2 types of recording (or called "Scope Type"): Normal and Rolling.

- Normal type has higher sample rate than that of Rolling type.
- Normal type saves data in the driver first and then sends data to the UI <u>at</u> <u>one time</u>. Rolling type sends data continuously only to the UI.
- a. Scope Type:
 - Normal:

Records the data for a certain period of time after the triggering conditions are satisfied. If there is no triggering condition set, click "Start Record" to record immediately.

Rolling:

Starts recording immediately upon clicking this button. The UI will refresh continuously.


The following functions (b and c) are for the "Normal" scope type only:

b. 🗌 Repeat

Only applicable under the Normal scope type. Tick to repeat the cycle of completing data receiving then recording (see chapter 8.2, point c.).

- c. Trigger Type:
 - NoTrigger:

Start recording immediately upon clicking the button.

RisingEdge:

Rising edge trigger on the level.

r FallingEdge:

Falling edge trigger on the level.

LowerThan:

The value lower than the level.

GreaterThan:

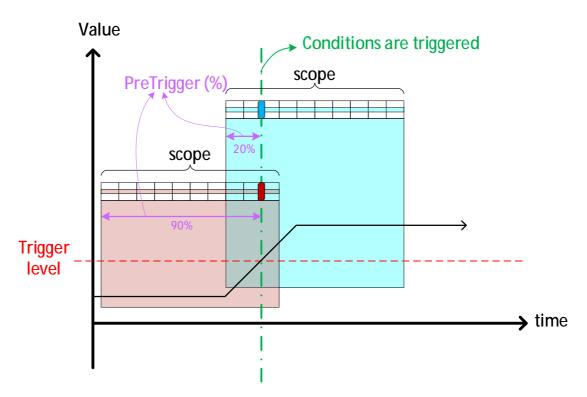
The value greater than the level.

Condition ↑							
Trigger level 1	Outside range						
	Inside range						
Trigger level 2	Outside range						

InsideRange:

Values between level 1 & level 2.

OutsideRange:


Values greater than the level 1 or lower than the level 2.

Trigger Channel:

Choose the trigger source.

Drag to configure how much portion (%) of a record (namely, the recorded data) will be the part where the triggering conditions are <u>not</u> satisfied.

The scope on the left is with PreTrigger 90%, meaning that 90% of the data shown on the *left* scope is below trigger condition(s). Likewise, for the scope on the right, 20% of the data shown on the *right* scope is below trigger condition(s)

Trigger Level 1 & 2:

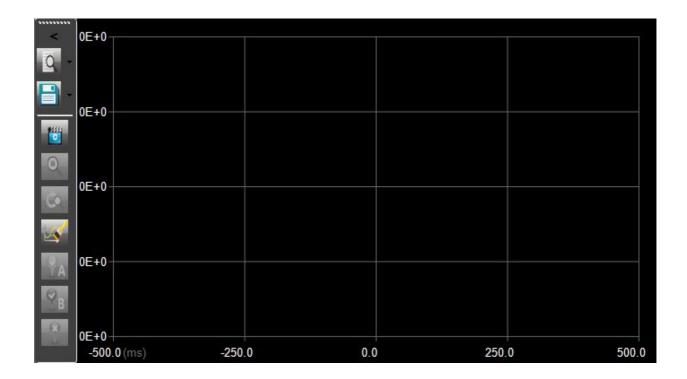
Set the threshold of the trigger.

Trigger Level 1	0
Trigger Level 2	0

8.3.2 Trial Run Tab

Please refer to chapter 6 Trial Run.

8.3.3 Gain Tab

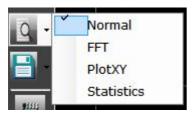

Users can set the gain parameters via this panel directly.

8.3.4 Script Tab

Click to execute script.

8.4 Display Panel

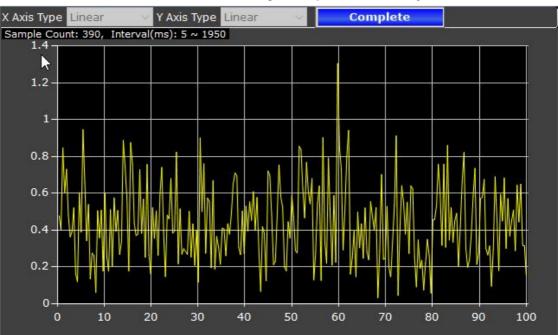
The display panel shows you the monitoring results.


You can change the data presentation way and save the monitored data in TXT., or PNG. format.

a. <

The Display Panel can be enlarged using the arrow button.

8.4.1 Data Presentation Way


Click the arrow beside Plot Type icon to select a preferred way of data presentation. The ways are: Normal, FFT, PlotXY, and Statistics.

a. Normal

b. FFT

Fast Fourier Transform for observing the spectrum analysis.

c. PlotXY:

 X axis
 PosFdb

 Fade Effect
 Fixed Ratio to 1:1

 200.000

 Fixed Ratio to 1:1

 75.000

 -50.000
 -50.000
 -175.000
 -175.000
 -14.292
 46.083
 106.458
 166.834

This X-Y plot can map 2 channels to the plane.

ı X axis:

Choose which data source to be the X axis.

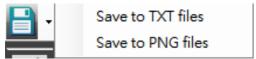
Fade Effect:

When ticked, the curves shown on the display panel will fade out.

Fixed Ratio to 1:1

Fix the plane ratio to be 1:1.

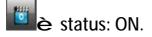
d. Statistics:

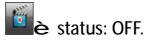

Shows a variety of motion data, such as maximum and minimum values, peak to peak, root mean square, etc.

Plot 1						_	\Box \times
DataSource	Minimum	Maximum	Average	P2P	Sum	RMS	Std. Dev.
PosFdb	-27.5	-17.495	-22.219	10.005	-44438.3	22.723	4.756
VelFdb	-74.996	71.256	1.046	146.252	2091.66	18.345	18.316

When the "marks A and B" are applied (see chapter 8.4.3, point e.), the statistics panel will show the various values that correspond to the marks A and B.

8.4.2 Save to Files

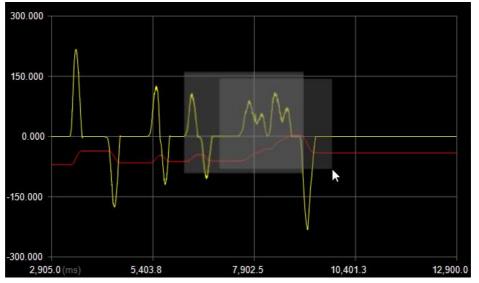

Choose to save the monitored data in TXT. or PNG. format.



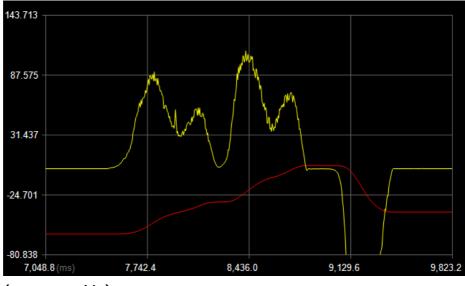
8.4.3 Scope Tools

a. Turn Scope ON/OFF:

To switch the scope function ON/OFF. When function is off, the oscilloscope graph will be frozen.



b. Zoom ON/OFF:


Steps:

- 1. Click the icon to activate the Zoom.
- 2. Hold the left mouse button and drag a box around the area of interest.

(
 The selected area will appear in dark grey)

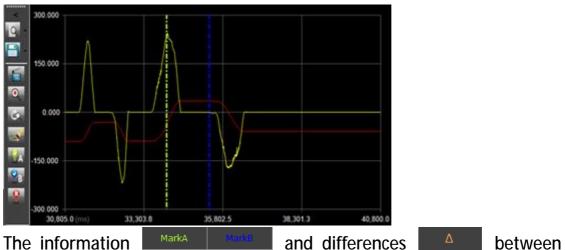
3. Release mouse button to let the display zoom in the selected area.

⁽ \uparrow zoomed in)

c. Zoom Reset:

Reset to the original graph.

d. Clear Plot:



Clear the display panel.

Mark A/B: e.

Click on the Mathematical Click on the display panel.

Drag to position the

marks A and B are shown on the "Mark Tab" of Further Setting Panel.

Channel		MarkA		Δ
Cha	×	34020	35370	-1350
le	Y			
LIne	CHI			
P	CH2	241.29650	-0.23100	241.52750
Grid	СНЗ			
×	CH4			
Mark	CH5			
SI	СНб			
DigitalBus	CH7			
Digi	СН8			

f. Clear Marks:

Clear all marks on the display panel.

8.5 Further Setting Panel

This panel consisting of 5 tabs is to further configurate the graphs shown on the display panel; besides, the information of the marks A and B is shown on the Mark tab.

nnel	Channel	Unit	x	+
Channel	PosRefStp	mm 🗸	1	0
e	🗹 PosFdb	mm ~	1	0
LIne	Rosênn	mm ~	1	0
	velRefPrfl	mm/: ~	1	0
Grid	VelFdb	mm/: ~	1	0
	🗹 Takel	Α ~	1	0
Mark	✓ IqFdb	Α ~	1	0
_	VDCFdb	V ~	1	0
DigitalBus				

8.5.1 Channel Tab & Line Tab

Users can show or hide channels, change the color, unit or width of the line(s), and adjust the values (by multiplication and/or addition addition to view the scope better.

Channel Tab

Line Tab


Channel	Unit	x	+	Channel	Color	Width
PosRefStp	mm 🗸	1	0	PosRefStpMg	~	1
PosFdb	mm 🗸	1	0	PosFdb	~	1
PosErr	mm 🗸	1	0	PosErr	~	1
VelRefPrfl	mm/: ~	1	0	VelRefPrfl	~	1
VelFdb	mm/: ~	1	0	VelFdb	~	1
✓ IqRef	Α ~	1	0	IqRef	~	1
✓ IqFdb	Α ~	1	0	IqFdb	~	1
VDCFdb	V ~	1	0	VDCFdb	~	1

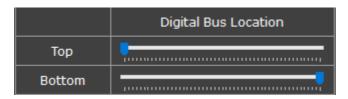
8.5.2 Grid Tab

	Grid Number								
X axis	4								
Y axis	4								
Auto Scale	🗹 🛛 X Axis	🗹 Y Axis							
Min	29155	-100							
Max	39150	200							
	Digital Bu	s Location							
Тор									
Bottom									

a. X/Y Axis:

To set how many grids to be shown on the X and Y axes.

b. Auto Scale:


Automatically adjust the minimum and maximum limit of the X and Y axes.

c. Min/Max:

Customize the minimum and maximum limit of the X and Y axes.

d. Digital Bus Location:

Adjust the position of digital bus graphs shown on the display panel.

Example:

X axis	4				0												
Y axis	4		2021														
Auto Scale	2	X Axis	2	Y Axis		0E+0											
Min		-395		a						٦_	1						
Мах		9600		0		0E+0	. 1		1			-					
1		Digital	Buis Loc	ation		VETU											
Тор		-//															
Bottom						0E+0											
					9												
						0E+0 -395	0 (m	5)	2,	103.8		4,60	2.5	7	101.3	}	9,600.0

8.5.3 Mark Tab

Mark tab shows the values and differences (Δ) of the marks A and B.

8.5.4 Digital Bus Tab

The Digital Bus function is for observing the activity of certain bits. Users can also mask the bits which are not needed.

Chann	el Name	Mask	
Digital Input 🛛 🗸		0b1110000	Add
Idx	Cha	nnel Name	Bit
0	Di	4	
1	Di	5	
2	Di	6	

Channel Name:

Select the data source to be processed.

I Mask:

Key in the binary matrix value of the bits to be observed.

ı Add:

Click to include these bits into the table of interest.

- ı Idx:
- The serial number for the bits of interest listed on this table.
- ı Bit:

Bit number.

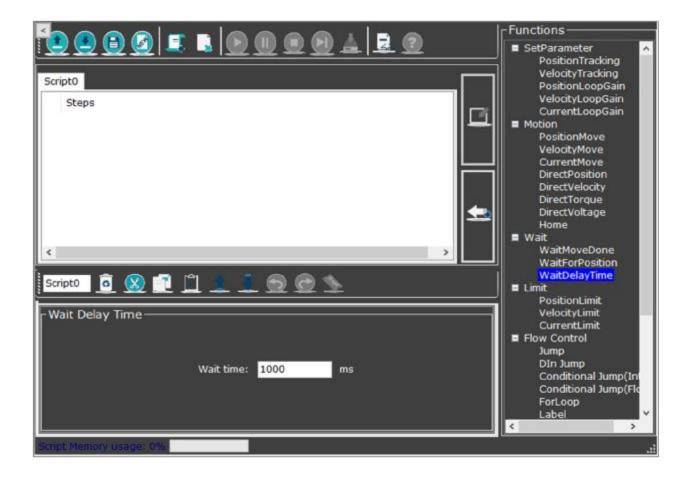
right click) Delete / Clear:

Delete certain bits or clear all the bits of interest.

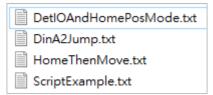
8.5.4.1 Configuration Steps

Let's take observing the bit 4, 5, and 6 of digital input for example:

Step	Description	Example
1	Go to the Scope Setting tab on the [Scope Setting Trial Run Gain Script] Panel. Configure the data source of interest (e.g. digital input) and then click "Start Record".	Scope Detting Trial Fun Can Donot Start Scope Type Rolling Ch Similar Start Scope Type Rolling Ch Similar Start Sample Rate 200 Hz 1 Digital Tipot Sample Count 2000 2 ChCff V
2	Go to the DigitalBus tab on the Further Setting panel. Select the data source (choose from the Channel Name list).	Object Channel Name Mask Digital Input Ob1110000 Add Idx Channel Name Bit
3	Decide which bit(s) to show. Convert the bit's numeric figure into binary matrix value. Next, key in this value into the "Mask" textbox and press enter; then click "Add". (note: "0b" means binary)	 In this case, to observe the bits 4, 5, and 6 è (1) 4, 5, 6 equals to binary matrix value "1110000". (2) Key in 1110000 into the "Mask" textbox and press enter. (3) Click "Add".


4	Now, observe the scope. On the display panel, the numbers in dark grey color are the ldx number. For example: Idx #0 is bit 4, Idx #1 is bit 5, Idx #2 is bit 6.	Channel Digital Inp Idx 0 1 2 0E+0 0E+0 0E+0 Channel Digital Inp Idx 0 1 2 0E+0	out	Add Bit 5 6 4 5 6
5	To delete a specific line, choose the channel bit and right click, then select "Delete".	Channel Digital Inp Idx 0	out v Ob1110000 Channel Name Digital Input	Add Bit 4
	To clear all, right click on the table and select "Clear".	1 2	Digital Input Digital Input Delete Clear	6

6	Or, you can add more new	Channel				0E+0
	channels by selecting other	PosFdb Idx	Channel Name	Add		
		O	Digital Input	4		
	data source and then adding	1	Digital Input	5	100	+IU U
	data source and their adding	2	Digital Input	6		
	them into the table.	3	PosFdb	1	121	0E+0 2
		4	PosFdb	2	100	00-+0
		P				0E+0


Chapter 9 Script

9.1 Intro and Interface Tour

Script can be seen as a state virtual machine; besides, script can simulate a series of motion commands. In application, script is usually used to test the performance of the driver executing or demonstrating a series of motion profiles.

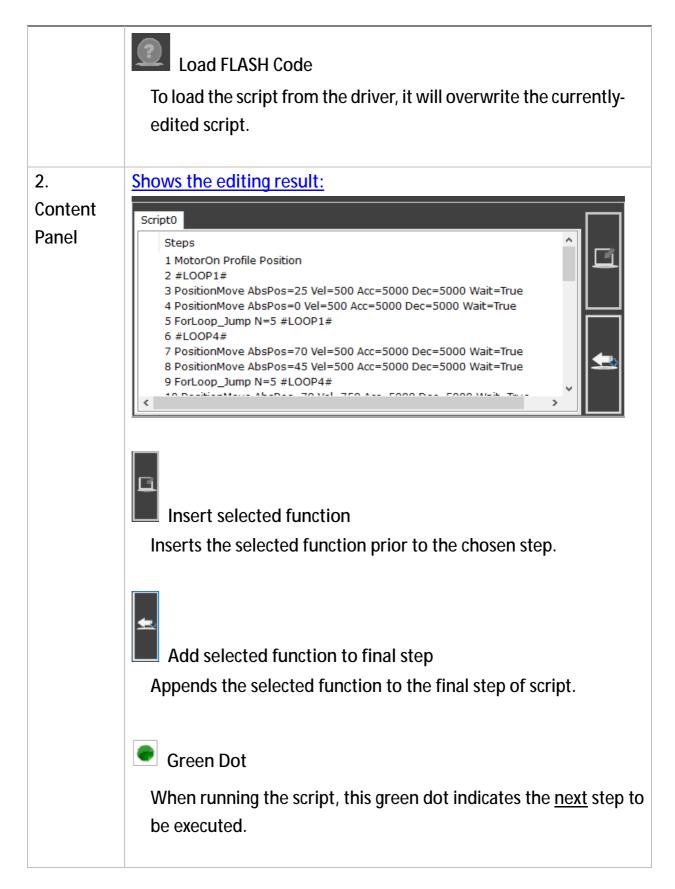
We cpc provide 4 script examples which can be found in the installation file.

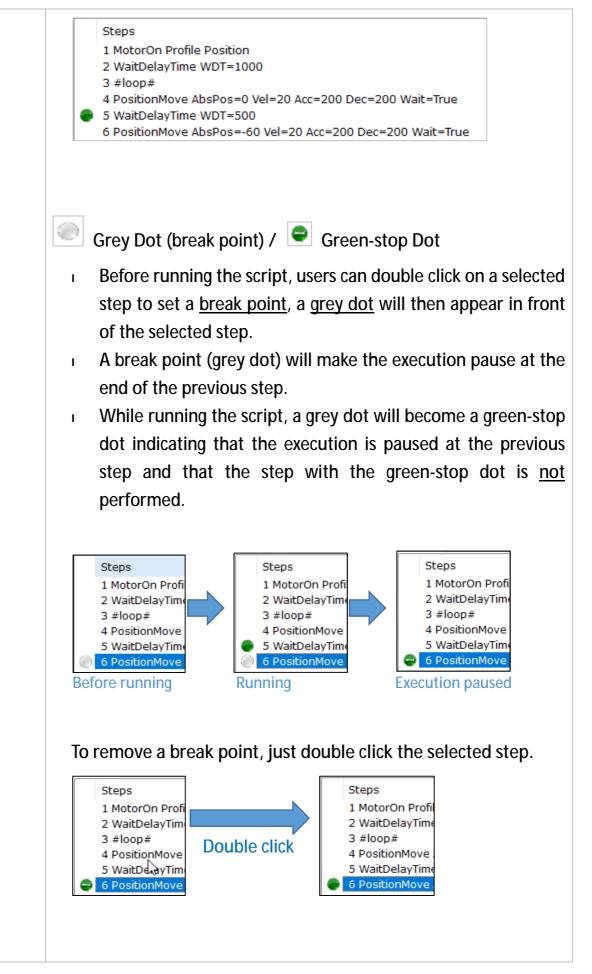
On the subsequent pages you will see how to import script file(s), modify parameters, and add functions into a script.

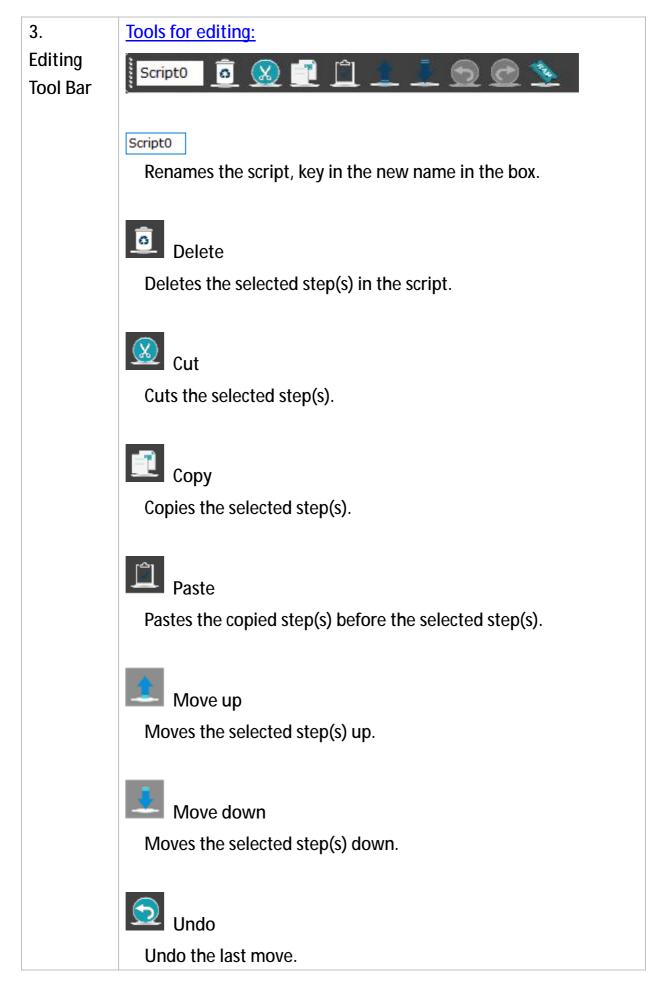
Scripts can run automatically after the boot sequence setting is done. Please refer to <u>Chapter 4.8 Boot Sequence</u>.

The Script interface has 6 areas:

→Tool Bar	Function Panel
Script0 Steps Content Panel	Functions SetParameter PositionTracking VelocityTracking PositionLoopGain VelocityLoopGain CurrentLoopGain Motion PositionMove VelocityMove CurrentMove DirectPosition DirectVelocity DirectTorque DirectVoltage Home Wait WaitMoveDone WaitForPosition WaitPorPosition WaitDelayTime Limit
-Wait Delay Time Parameter Setting Panel Wait time: 1000 ms Script Memory usage: 0%	PositionLimit VelocityLimit CurrentLimit Flow Control Jump Din Jump Conditional Jump(Int Conditional Jump(Flo ForLoop Label


- 1. Tool Bar on top of the interface, for processing file and executing script.
- 2. Content Panel showing the editing result.
- 3. Editing Tool Bar tools for editing.
- 4. Function Panel a menu to navigate the various functions.
- 5. Parameter Setting Panel to configure parameters of each function.
- 6. Memory Status Bar showing the usage (%) of flash memory.


9.2 Interface Elements


1.	For processing file and executing script:
Tool Bar	1
	Export
	Exports script file in txt. format.
	Import
	Imports existing script file.
	Save
	Saves script.
	New New
	Opens a new blank file.
	Note:
	If you are editing a file, clicking this "New" button will clear up
	all the content. Please make sure you've saved script files beforehand.
	~~~~~~~~~~~

For performing the script: See chapter 9.6 for the script execution flow. Runs each step of the script continuously. Pause Pauses the script. Click "Run" again to resume from where you paused at. Stop Stops the script. Click "Run" again to resume from the first step of script. Step by Step Executes only one step at a time and then pause. Click this button again to execute the next line. Compiler Click to convert the script into a machine-code. - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ **Register Viewer** 

A table for monitoring the value of integer variables and float-point variables.

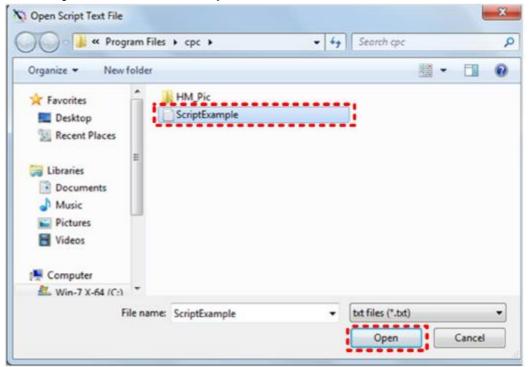




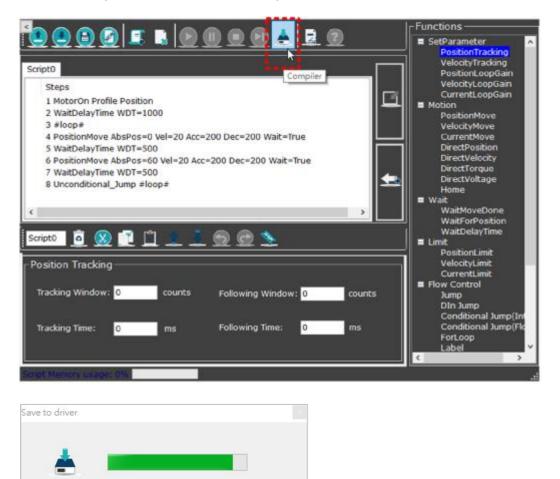


	Cancel Undo Cancel Undo Memory Calculates how much percentage (%) of the Flash the script will occupy.
4. Function Panel	A menu to navigate the various functions.  SetParameter PositionTracking VelocityTracking VelocityLoopGain CurrentLoopGain VelocityLoopGain ProfilePosition ProfilePosition DirectVelocity DirectPosition DirectVelocity Home Vait VaitoelayTime Limit PositionLimit VelocityLimit CurrentLimit Flow Control Jump DIn Jump Conditional Jump(Int) Conditional Jump(Int) Conditional Jump(Float) ForLoop Label Motor MotorOn Register If_RegisterSet IntRegisterMath FloatRegisterMath FloatRegisterMath GetSetRegister

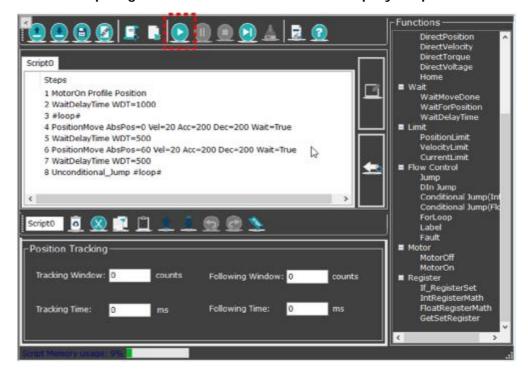
5.	To further configure parameters under each function (shown on the
Parameter	function panel).
Setting	
Panel	
6.	Showing the usage percentage of flash memory.
Memory	Script Memory usage: 0%
Status Bar	


# 9.3 Import Scripts from File

#### Steps:


1. Click "Import".

	SetParameter     PositionTracking     VelocityTracking     PositionLoopGain
Script0	VelocityLoopGain CurrentLoopGain     CurrentLoopGain     PositionMove VelocityMove CurrentMove DirectPosition DirectVelocity DirectVoltage Home     Wait WaitMoveDone WaitForPosition WaitDelayTime     Limit PositionLimit
Position Tracking Tracking Window: 0 counts Following Window: 0 counts	VelocityLimit CurrentLimit E Flow Control Jump
Tracking Time: 0 ms Following Time: 0 ms	Din Jump Din Jump Conditional Jump(Int Conditional Jump(Fic ForLoop Label

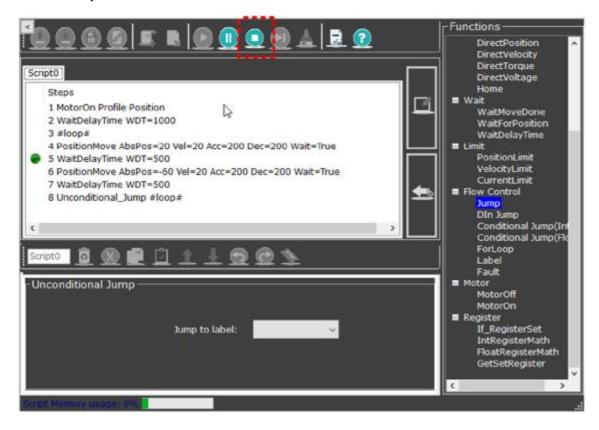

2. Locate your file and click "open".



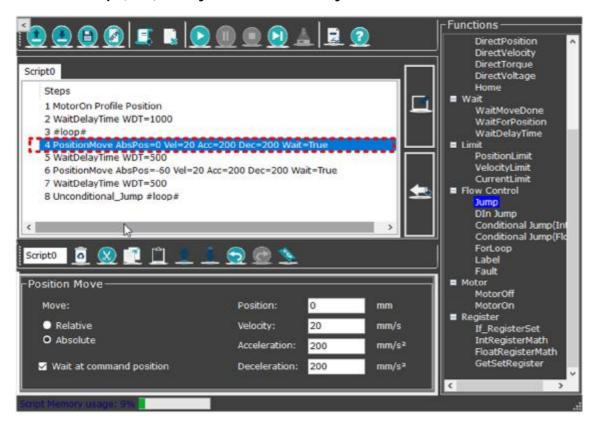
3. Click "Compiler" and wait for the process to finish.



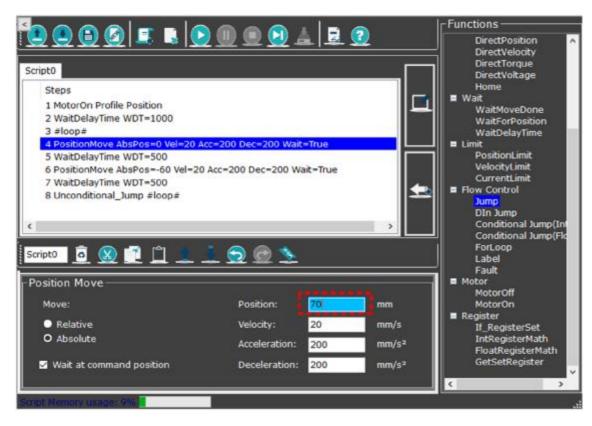
4. After compiling is finished, click "Run" or "Step by Step" button to run script.




# 9.4 Modify Script Parameter


To modify script parameters, users must "stop" the script execution first. When script is stopped, users can then modify parameters and compile them again.

#### Steps:


1. Click "Stop".



2. Click the step (line) that you wish to modify.

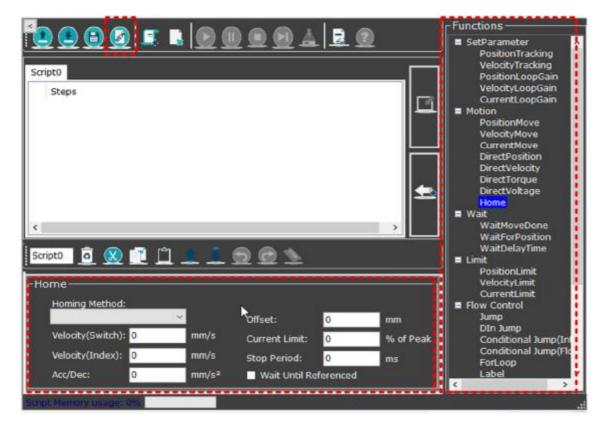


3. Modify the value on the Parameter Setting panel and then press Enter.



4. Click "Compiler" to compile the script again to be executed.

# 9.5 Add a Function


### 9.5.1 Into a New File

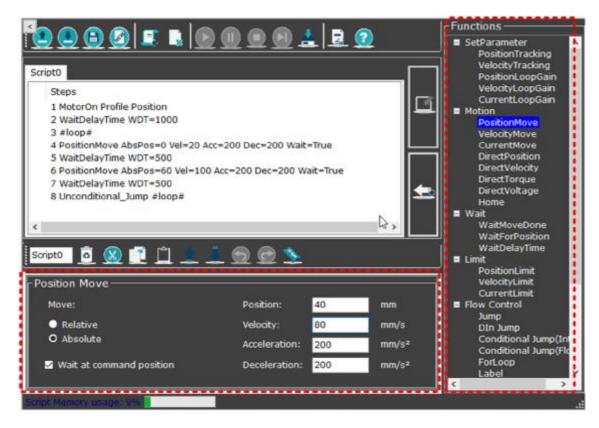
#### Steps:

Click "New" **Solution** 1.



- Select a function from the function panel. 2.
- 3. Go to the parameter setting panel. Modify the value or select a preferred action from the list.



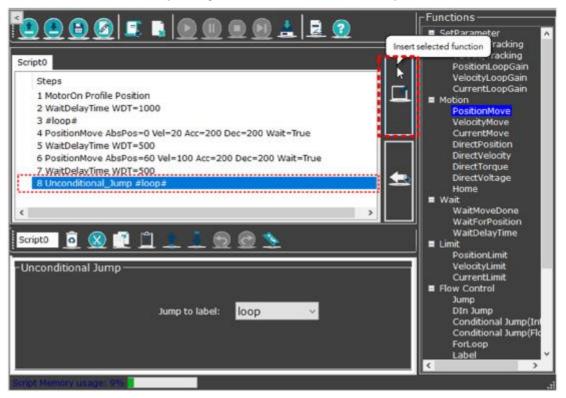

4. Click "Add" button, then the selected new function will appear on the content panel. Now you have successfully added a new function.

	-Functions SetParameter PositionTracking
Script0 Steps I Home Method=-5 SwitV=0 IndxV=0 Acc=0 Offset=0 StpCur=0 Prd=0 Wait=.	VelocityTracking PositionLoopGain VelocityLoopGain CurrentLoopGain Motion PositionMove
Add sel	ected function to final line DirectVelocity DirectTorque DirectVoltage Home Wait WaitMoveDone WaitForPosition WaitDelayTime Limit PositionLimit
Home Homing Method: -5 Offset: 0 mm Velocity(Switch): 0 mm/s Current Limit: 0 % of Peak Velocity(Index): 0 mm/s Stop Period: 0 ms Acc/Dec: 0 mm/s ² Wait Until Referenced	VelocityLimit CurrentLimit Flow Control Jump Din Jump Conditional Jump(Int Conditional Jump(Flo ForLoop Label v

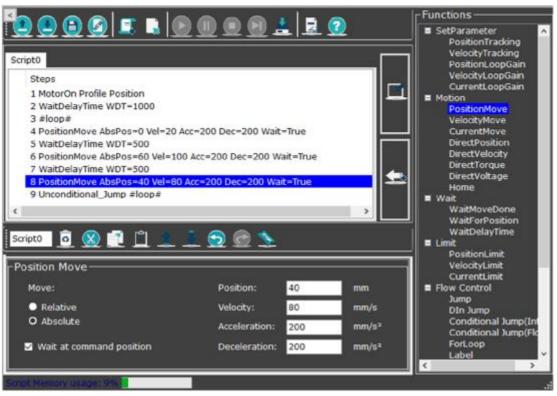
# 9.5.2 Into a Currently-Used File

#### Steps:

- 1. Select a function from the function panel.
- 2. Go to the parameter setting panel. Modify the value or select a preferred action from the list.

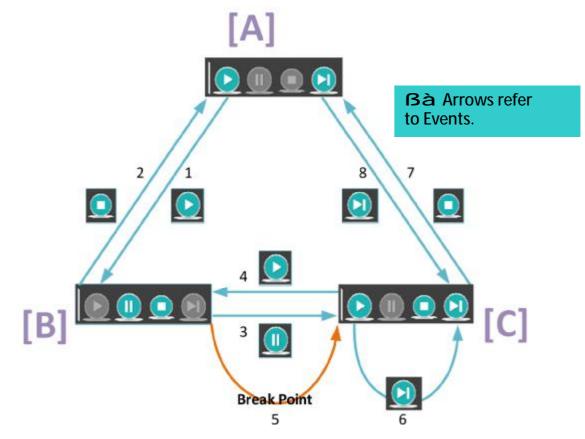



3. Go to the content panel, click on the line <u>before which</u> you wish to insert the new function, then click "Insert".


#### For example:

If you wish to <u>insert</u> a PositionMove after step #7, you will need to click <u>step #8</u> and <u>Insert</u>, so the new function will be placed after step #7 and <u>before</u> step #8. See images below.

#### ( $\downarrow$ To insert <u>after step #7</u>, you will need to click <u>step #8</u> and <u>Insert</u>)




### ( $\downarrow$ The newly-added function will be sequenced after step #7)



# 9.6 Run the Script

After the script is compiled, the tool bar will present the "Run" 🔊 and "Step by Step" 🗐 icons in green. The chart below shows the states and panel appearance while running the script.



I State [A]:

After scripts are compiled, the panel will look as state [A].

Arrow #5:

If there is break point(s) set, the script execution will be paused and will look as state [C].

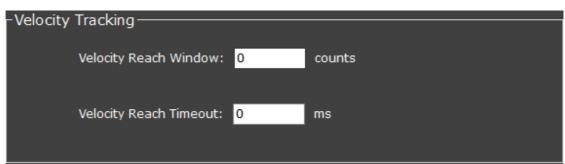
Arrow #6:

If users click the "Step by step" button, the panel will look the same.

Note: Scripts must be compiled to be executed.

# 9.7 Function Description

Regarding the functions mentioned on subsequent pages, if users set parameters using IR (integer register) or FR (float number register), please note that the unit of IR and FR is "count" instead of the descriptions shown on the UI panel.


# 9.7.1 Set Parameter

Position Tracking

-Position Tracking		
Position Window:	0	counts
Position Window Timeout:	0	ms
Following Error Window:	0	counts
Following Error Window Timeout:	0	ms

Please refer to chapter 4.3.3 <u>Motor Protection—Position</u> for parameter details.

velocity Tracking



a. Velocity reach window / timeout:

When the velocity feedback is within the reach window and continues for a period (reach timeout), the velocity target reach flag will rise.

# Position Loop Gain

-Position Loop—			
	PosKp:	0	

Please see chapter 5.4 <u>Tune—Position</u> for definition.

velocity Loop Gain

-Velocity Loop-			
, ' '			
VelKp:	0	VelKpVi: 0	
VelKi:	0	VelKpAI: 0	
Veiki.	0	VeitpAI.	

Please see chapter 5.3.1 for further parameter information.

# ı Current Loop Gain

-Current Loop—			
CurKp:	0		
CurKi:	0		

Please see chapter 5.1.1 for further parameter information.

# 9.7.2 Motion

### I Position Move

Position Move			
Move:	Position:	0	mm
O Relative	Velocity:	0	mm/s
Absolute	Acceleration:	0	mm/s²
Wait at command position	Deceleration:	0	mm/s²

#### a. Move

Tick to give relative or absolute position command.

- b. Wait at command position
  - Ø When ticked, the driver will wait for the target to be reached before executing the next command.
  - Ø When unticked, the driver will execute the newly received command right away (won't wait for target reach).
    <u>Note</u>:

If this box is unticked, it might cause following error.

c. Position

Target position.

- d. Velocity Profile velocity of movement.
- e. Acceleration

Profile acceleration.

f. Deceleration

Profile deceleration.

# Note:

The columns of Position, Velocity, Acceleration, and Deceleration can be filled in with number or the name of IR (Integer Register). The IR unit is "count".

Velocity Move

L

-Velocity Move				
Velocity: 0	mm/s	Acceleration:	0	mm/s²
Wait for command v	elocity	Deceleration:	0	mm/s²

a. Velocity

Value of profile velocity.

- b. Wait for command velocity
  - Ø When ticked, the driver will reach the present command's target first before executing the next command.
  - Ø When unticked, the driver will execute the newly received command right away without fully finishing the current command.
- c. Acceleration

Profile acceleration. The maximum acceleration speed during movements.

d. Deceleration

Profile Deceleration. The maximum deceleration speed during movements.

# Note:

The columns of Velocity, Acceleration, and Deceleration can be filled in with number or the name if IR (Integer Register). The IR unit is "count".

#### L Current Move

-Current Move				
Current:	0	А		
Current Slope	: <mark>0</mark>	mA/s		

## Note:

The columns of current and current slope only accept either numbers or names FR register.

a. Current

Profile current. Current unit in Amperes.

b. Current slope

The rate of current increase, unit in mA per second.

### Note:

This column can only accept either FR or numbers greater or equal to 1.

# 1 Direct Position

a. Position

The value of the designated absolute position.

# Note:

This column can be filled in with number or the name of IR (Integer Register). The IR unit is "count".

# Direct Velocity

a. Velocity

The value of the designated velocity.

Note:

This column can be filled in with number or the name of IR (Integer Register). The IR unit is "count".

- Direct Torque
  - a. Iq

The current (Amperes) on the "q" (quadrature) axis in the (d,q) coordinate system.

Note:

This column can be filled in with number or the name of FR (Float number Register). Unit is Amperes.

Home

L

-Ho	me					
	Homing Method:		_			
		~		Offset:	0	mm
	Velocity(Switch):	0	mm/s	Current Limit:	0	% of Peak
	Velocity(Index):	0	mm/s	Stop Period:	0	ms
	Acc/Dec:	0	mm/s²	Wait Until Ref	erenced	

a. Homing Method

Select a preferred homing mode from the list.

b. Velocity (Switch / Index)

The speed to move to the switch/index.

c. Acc/Dec

Acceleration/deceleration speed.

d. Offset

The offset millimeter (mm) from origin. Moreover, the offset value will be the position mm when a homing is completed.

e. Current Limit / Stop Period

When the driver continues to output more than or equal to a certain percentage of peak current (Current Limit) for a period of time (Stop Period), the motor will be regarded as hitting a hard stop.

# 9.7.3 Wait

1 Wait Delay Time

Wait for some time (ms) first before running the next step of script.

# 9.7.4 Limit

Position Limit

Same as the parameter "Command Forward/Backward Limit" in the section of "motor protection—position".

-Position Limit			
Command Forward Lin	nit: 0	mm	
Command Backward Lin	nit: <mark>0</mark>	mm	

velocity Limit

The motor rated speed in mm/s.

-Velocity Limit ——				
	Motor Rated Speed:	0	mm/s	

L Current Limit

-Current Limit	
Motor Peak Current:	0 A
Motor Continuous Current:	0 A
Motor Peak Current Time:	0 s

Please see chapter 4.3.1 for further parameter information.

# 9.7.5 Flow Control

ı Jump

Unconditionally jump to a selected label in script, no conditions required.

ı Din Jump

Jump to a selected label depending on the status (Low/High) of digital in.

Conditional Jump (Int)

Conditional Jump (Integer)

-Conditional Jump(Int)				
	Register:	Operator:	Value:	
If	IR1 v	~	0	
	Jump to labe:		~	

- Ø Jump to a selected label when the value of integer register satisfies the configured condition.
- Ø The column of "Value" can be filled in with number or the name of IR (Integer Register).
- Conditional Jump (Float)

-Conditional Jump(Floa	t)———			
	Register:	Operator:	Value:	
If	FR1 $\sim$	~	0	
	Jump to labe:		~	

- Ø Jump to a selected label when the value of float number register satisfies the configured condition.
- Ø The column of "Value" can be filled in with number or the name of FR (Float number Register).

# I For Loop

Looping for this many times (N) then jump to the selected label.

-For Loop—	For N=1 TO 0
	Jump to label: 🗸 🗸
	End For

# Note:

- Ø The first run is regarded as the first loop.
- Ø The ForLoop function cannot be enclosed in another ForLoop.

# Label

L

Set a label and name it.

-Label	
	Label text:
	# 0 #

# 9.7.6 Motor

- I Motor Off
- I Motor On

Set motor on and select a motor-on operation mode from the list.

- MotorOn			
Туре:	Direct Voltage Direct Voltage	~	
	Direct Position Direct Velocity Direct Torque Profile Position		
Script Memory usage: 0% Disable Error Code 0 www.chieftek.c	Profile Velocity Profile Torque Home		

# 9.7.7 Register

I If_ Register Set

Set triggering condition and the corresponding reaction.

-Conditional Register S	Set ——					
Conditional Register e						
	Registe	er:	Operator	r: Value:		
	If <mark>0</mark>			~ 0		
		Registe	r:	Value:		
	Set	0		0		
		0	=	• 0		

a. Register:

Key in names of IR or FR

b. Value:

Key in number, IR or FR.

#### Int Register Math

L

Set an integer formula.

-Int Ma	th ———	_		_		_		_	
Result	:		Operand1:		Operator:		Operand	2:	~~
IR1	~	=	IR2	~	*	~	IR3	~	
					+				
					- *				
					/				
Script Mer	mory usage	: 0%			AND OR				
n Disable	Error Cod	e O	www.chieftek	.com	XOR				
					NOT NONE				

## Note:

1. <u>Operand1 and Operand2</u>:

If users key in float numbers into the columns Operand1 and Operand2 under this "Int Register Math" function, the UI will use the keyed-in number's corresponding integer value (according to the IEEE745 system) to process the formula.

2. Operator (mathematics):

When using division, the UI will round down the quotient to an integer; all decimals will be chopped off.

- 3. <u>Operator (bitwise)</u>:
  - Ø Be aware that when bitwise operation is used (i.e., AND, OR XOR, NOT), the operands need to be 16 bit (value ranging from  $-2^{15}$  to  $2^{15}$  -1).
  - Ø Example of the bitwise operation:

Item		Example	а	b	С
AND	&	c = a & b	1100 1101	1001 1110	1000 1100
OR		c = a   b	1100 1101	1001 1110	1101 1111
XOR	^	c = a ^ b	1100 1101	1001 1110	0101 0011
NOT	~	c = ~ a	1100 1101		0011 0010

Ø The "NONE" option will ignore Operand2.

Float Register Math

L

L

Set a float number formula;

-Float Math-								
Result:			Operand1:		Operator:		Operand2:	
FR1	$\sim$	=	1.5	$\sim$	+	~	FR2	~

## Note:

- 1. <u>Operand1 and Operand2</u>: Users can key in FR, float number, or integer.
- 2. <u>Operator (mathematics)</u>: The "NONE" option will ignore Operand2.

## Get Set Register

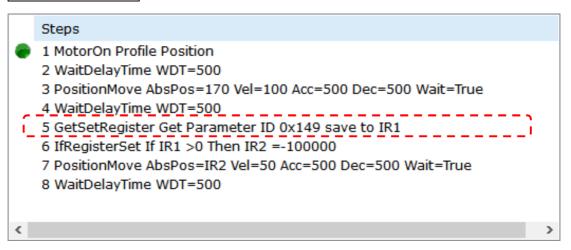
– Get Set Register —				
	Parameter ID:		Register:	
O Get	0	Save to	0	
	Parameter ID:	Regis	ter:	
Set	0	= 0		

a. Parameter ID:

cpc's own ID numbers which corresponds to the numerous parameters mentioned in the CiA[®] 402 Draft Standard Proposal.

#### b. Register

The name of integer or float number register.


Ø Get Parameter ID Save to Register

Get the value out of a parameter ID and save this value to a designated register.

Ø Set Parameter ID = Register

Make the value of a parameter ID same as the value of a designated register.

# Script Example:



## In step 5:

Use "Get Set Register" function to acquire the position command value of the first move and save it as IR1 value.

# In step 6:

Use "If_ Register Set" function. If IR1 is bigger than 0, then make IR2 as the configured value.

# In step 7:

Give the second position command using the IR2 value (processed in "count") as the target position value.

# Chapter 10 Error Log 🥼



When a fault event occurs, such as over-temperature, protection threshold exceeded, incorrect wiring, difficulties in accessing signal, etc., the Error Log will record the occurrence time and code of the error. If the driver is shut down due to error(s), users can trace the cause and know how to troubleshoot with the information shown on error log.

# Note:

- If the driver is powered off, the record will be cleared. I.
- The Error Log can record up to 16 instances. I.

<					
	Time	Fault Code	Fault Name	Discription	
	2017/11/13/14:51:23	0x8481	OverVelocityAbsolute	Velocity feedback over velocity	Check motor opere
	2017/11/01/14:32:34	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:31:56	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:42	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:28	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:22	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:39	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:19	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:08	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:43	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:10	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:04	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:33	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:44	0x8611	FollowingError	Position error satisfy following error	Check motor operatio
	2017/11/01/14:32:29	0x3142	MainsFrequencyTooSmall		
	2017/11/01/14:32:17	0x3142	MainsFrequencyTooSmall		
	<				>
	Clear Fault				

Error code definition is in accordance with the specification of CiA 402-2 DSP V3.0.0_Drives and motion. The table of driver error code on the subsequent pages defines all cpc driver error codes and includes descriptions as well as required troubleshooting actions.

Error	Error Message	Description	Action Required
Code			
2220	ContinuousOverCurrent_DeviceInternal	Drivers internal power stage is short	Check for unstable current loop gain
2310	ContinuousOverCurrent_MotorSide	Motor current exceeds limit	Check for unstable current loop gain
3210	DCLinkOverVoltage	Internal DC capacitor over 375 V	<ol> <li>Check external AC supply.</li> <li>Consider adding additional regenerative braking resistor.</li> </ol>
3220	DCLinkUnderVoltage	Internal DC capacitor under 48V	Check high voltage supply
4310	ExcessTemperatureDrive	Drivers internal temperature over safe limit	Improve environment cooling condition
5520	ROM_EPROM	Factory calibration lost	Contact Customer Service
5530	EEPROM	Stored user parameters lost	Reload driver setting from file
7121	MotorBlocked	Motor stuck triggered	Check slide and guide or motor stuck setting
7122	MotorErrorOrCommutationMalfunc	Something wrong during phase-find	Check motor wiring and execute phase find again.

# <Table of cpc Driver Error Code>

Error	Error Message	Description	Action Required
Code			
7305	IncrementalSensor1Fault	Encoder	Check encoder
		feedback signal	wiring or improve
		error	system noise
7306	IncrementalSensor2Fault	Auxiliary	Check controller
		encoder signal	wiring or improve
		transition error	system noise
8481	OverVelocityAbsolute	Motor velocity	Check motor
		feedback over	operation or
		velocity	over-velocity
		protection limit	protection setting
8611	FollowingError	Motor position	Check 1. Motor
		error satisfy the	operation and 2.
		condition of	The setting of
		following error.	Following Error
			Window/Timeout
8682	PositionLimitMinimum	Motor position	Check motor
		feedback over	operation or
		position	over-position
		protection limit	protection setting
8683	PositionLimitMaximum	Motor position	Check motor
		feedback under	operation or
		position	under-position
		protection limit	protection setting
90F0	ExternalAlarmDigitalInput	External alarm	Check controller
		triggered	operation
FF01	MainISROverload	CPU overload.	Contact customer
			service.
FF02	CurrentSensorU	Motor current	Reboot driver
		sensor error	
FF03	CurrentSensorV	Motor current	Reboot driver
		sensor error	

Error	Error Message	Description	Action Required
Code			
FF05	HallSensorCodeInvalid	Invalid hall	Check hall sensor
		sensor code	configuration
		detected	
FF07	MotorCtrlOpModeInvalid	The code of	Check Operating
		Operation Mode	Mode and wiring.
		is invalid	
FF08	CommutationRequired	Attempting to	1. Check phase
		activate motor	find setting.
		without	2. Execute phase-
		performing	find again.
		phase find first	

# End of Document